دوره 15، شماره 3 - ( 5-1404 )                   جلد 15 شماره 3 صفحات 334-317 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Talatahari S, Nouhi B. GENERATIVE ARTIFICIAL INTELLIGENCE IN STRUCTURAL OPTIMIZATION: OPPORTUNITIES, CHALLENGES, AND FUTURE DIRECTIONS. IJOCE 2025; 15 (3) :317-334
URL: http://ijoce.iust.ac.ir/article-1-641-fa.html
GENERATIVE ARTIFICIAL INTELLIGENCE IN STRUCTURAL OPTIMIZATION: OPPORTUNITIES, CHALLENGES, AND FUTURE DIRECTIONS. عنوان نشریه. 1404; 15 (3) :317-334

URL: http://ijoce.iust.ac.ir/article-1-641-fa.html


چکیده:   (879 مشاهده)
The emergence of Generative Artificial Intelligence (GenAI) presents new possibilities for transforming structural optimization processes in civil and structural engineering. Unlike traditional AI models focused on prediction or classification, GenAI models, such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Diffusion Models, and Large Language Models (LLMs), enable the generation of novel structural designs by learning complex patterns within design-performance data. This paper provides a comprehensive review of how GenAI can support tasks such as design generation, inverse design, data augmentation for surrogate modeling, and multi-objective trade-off exploration. It also examines key challenges, including constraint integration, model interpretability, and data scarcity. By evaluating recent applications and proposing hybrid frameworks that blend generative modeling with domain knowledge and optimization strategies, this study outlines a research roadmap for the responsible and effective use of GenAI in structural optimization. The findings emphasize the need for interdisciplinary collaboration to translate GenAI’s creative potential into physically valid, structurally sound, and engineering-relevant solutions.
متن کامل [PDF 612 kb]   (408 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1404/4/4 | پذیرش: 1404/5/11

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb