دوره 11، شماره 1 - ( 10-1399 )                   جلد 11 شماره 1 صفحات 141-113 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kaveh A, Eskandari A. ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT NEURAL NETWORKS; A COMPARATIVE STUDY. IJOCE 2021; 11 (1) :113-141
URL: http://ijoce.iust.ac.ir/article-1-468-fa.html
ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT NEURAL NETWORKS; A COMPARATIVE STUDY. عنوان نشریه. 1399; 11 (1) :113-141

URL: http://ijoce.iust.ac.ir/article-1-468-fa.html


چکیده:   (9645 مشاهده)
The artificial neural network is such a model of biological neural networks containing some of their characteristics and being a member of intelligent dynamic systems. The purpose of applying ANN in civil engineering is their efficiency in some problems that do not have a specific solution or their solution would be very time-consuming. In this study, four different neural networks including FeedForward BackPropagation (FFBP), Radial Basis Function (RBF), Extended Radial Basis Function (ERBF), and Generalized Regression Neural Network (GRNN) have been efficiently trained to analyze large-scale space structures specifically double-layer barrel vaults focusing on their maximum element stresses. To investigate the efficiency of the neural networks, an example has been done and their corresponding results have been compared with their exact amounts obtained by the numerical solution.
متن کامل [PDF 2023 kb]   (4101 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: 1399/11/30 | پذیرش: 1399/10/12 | انتشار: 1399/10/12

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb