دوره 8، شماره 4 - ( 7-1397 )                   جلد 8 شماره 4 صفحات 563-547 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Torkan M, Naderi Dehkordi M. EVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE. IJOCE 2018; 8 (4) :547-563
URL: http://ijoce.iust.ac.ir/article-1-362-fa.html
EVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE. عنوان نشریه. 1397; 8 (4) :547-563

URL: http://ijoce.iust.ac.ir/article-1-362-fa.html


چکیده:   (24096 مشاهده)
Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this objective, first, a set of data pertaining to concrete mix designs containing fly ash was collected. Then, mix design parameters were used as the inputs of the artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) developed for predicting the compressive strength. In all these models, prediction accuracy largely depends on the parameters of the learning model. Hence, the particle swarm optimization (PSO) algorithm, as a powerful population-based algorithm for solving continuous and discrete optimization problems, was used to determine the optimal values of algorithm parameters. The hybrid models were trained and tested with 426 experimental data and their results were compared by statistical criteria. Comparing the results of the developed models with the real values showed that the ANFIS-PSO hybrid model has the best performance and accuracy among the assessed methods.
متن کامل [PDF 961 kb]   (5461 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: 1396/11/3 | پذیرش: 1396/11/3 | انتشار: 1396/11/3

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb