دوره 8، شماره 3 - ( 7-1397 )                   جلد 8 شماره 3 صفحات 399-381 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behnam A, Esfahani M R. PREDICTION OF BIAXIAL BENDING BEHAVIOR OF STEEL-CONCRETE COMPOSITE BEAM-COLUMNS BY ARTIFICIAL NEURAL NETWORK. IJOCE 2018; 8 (3) :381-399
URL: http://ijoce.iust.ac.ir/article-1-351-fa.html
PREDICTION OF BIAXIAL BENDING BEHAVIOR OF STEEL-CONCRETE COMPOSITE BEAM-COLUMNS BY ARTIFICIAL NEURAL NETWORK. عنوان نشریه. 1397; 8 (3) :381-399

URL: http://ijoce.iust.ac.ir/article-1-351-fa.html


چکیده:   (23062 مشاهده)
In this study, the complex behavior of steel encased reinforced concrete (SRC) composite beam–columns in biaxial bending is predicted by multilayer perceptron neural network. For this purpose, the previously proposed nonlinear analysis model, mixed beam-column formulation, is verified with biaxial bending test results. Then a large set of benchmark frames is provided and P-Mx-My triaxial interaction curve is obtained for them. The specifications of these frames and their analytical results are defined as inputs and targets of artificial neural network and a relatively accurate estimation model of the nonlinear behavior of these beam-columns is presented. In the end, the results of neural network are compared to some analytical examples of biaxial bending to determine the accuracy of the model.
متن کامل [PDF 1594 kb]   (6395 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: 1396/8/20 | پذیرش: 1396/8/20 | انتشار: 1396/8/20

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb