دوره 7، شماره 1 - ( 10-1395 )                   جلد 7 شماره 1 صفحات 80-71 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behfarnia K, Khademi F. A COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM. IJOCE 2017; 7 (1) :71-80
URL: http://ijoce.iust.ac.ir/article-1-284-fa.html
A COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM. عنوان نشریه. 1395; 7 (1) :71-80

URL: http://ijoce.iust.ac.ir/article-1-284-fa.html


چکیده:   (18885 مشاهده)

This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement content, maximum size of aggregate, gravel content, water-cement ratio, and fineness modulus. In this study, it is found that the ANN model is an efficient model for prediction of compressive strength of concrete. In addition, ANFIS model is a suitable model for the same estimation purposes, however, the ANN model is recognized to be more fitting than ANFIS model in predicting the 28-day compressive strength of concrete.

متن کامل [PDF 677 kb]   (6966 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1395/4/29 | پذیرش: 1395/4/29 | انتشار: 1395/4/29

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb