دوره 3، شماره 1 - ( 12-1391 )                   جلد 3 شماره 1 صفحات 207-179 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghodrati Amiri G, Namiranian P. HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY. IJOCE 2013; 3 (1) :179-207
URL: http://ijoce.iust.ac.ir/article-1-126-fa.html
HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY. عنوان نشریه. 1391; 3 (1) :179-207

URL: http://ijoce.iust.ac.ir/article-1-126-fa.html


چکیده:   (24633 مشاهده)
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorithm and learn to relate the dimension reduced response spectrum of records to their wavelet packet coefficients. Trained ANNs are capable to produce wavelet packet coefficients for a specified spectrum, so by using inverse WPT artificial accelerograms obtained. By using these tools, the learning time of ANNs reduced salient and generated accelerograms had more spectrum-compatibility and save their essence as earthquake accelerograms.
متن کامل [PDF 1311 kb]   (7769 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1391/11/5 | انتشار: 1391/12/25

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb