دوره 14، شماره 2 - ( 4-1403 )                   جلد 14 شماره 2 صفحات 4406-4388 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azarm A, Esfahanian M, Hamidi Rad H. Design of a brake kinetic energy recovery system using flywheel for a passenger car. ASE 2024; 14 (2) :4388-4406
URL: http://www.iust.ac.ir/ijae/article-1-671-fa.html
Design of a brake kinetic energy recovery system using flywheel for a passenger car. Automotive Science and Engineering. 1403; 14 (2) :4388-4406

URL: http://www.iust.ac.ir/ijae/article-1-671-fa.html


چکیده:   (2602 مشاهده)
The objective of developing kinetic energy recovery systems for vehicles is to repurpose energy otherwise dissipated during braking. Brake energy recovery and storage are achieved through two broad methods: electrical and mechanical, contingent on the energy storage type and the traction system's operational approach. Utilizing a rotating flywheel emerges as a practical, cost-effective, safe, and environmentally friendly means of storing energy, offering an extended service life. This study, synthesizing insights from various theories, aims to devise a prototype brake energy recovery system compatible with Samand car, employing the flywheel tank. Additionally, considerations for the power transmission system and clutch involve designing their type and dimensions, taking many factors into account for the selection. The initial design undergoes simulation and evaluation using MATLAB_SIMULINK and the ADVISOR plugin. The investigation delves into the influence of various design parameters on the efficiency of the system. Subsequently, attempts are undertaken to clarify the factors contributing to varied outcomes. The simulation results indicate a notable decrease in fuel consumption and emissions for a Samand car during urban driving cycles characterized by frequent braking. This improvement is realized through the utilization of a steel flywheel with an incomplete cone geometry and a specified radius. Suggestions are put forth for refining the controller to potentially enhance reductions in fuel consumption and pollution.
متن کامل [PDF 1199 kb]   (1323 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: دینامیک خودرو

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بین‌المللی مهندسی خودرو می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Automotive Science and Engineering

Designed & Developed by : Yektaweb