دوره 6، شماره 4 - ( 9-1395 )                   جلد 6 شماره 4 صفحات 2264-2256 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaffari A, Khodayari A, Arefnezhad S. Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation. ASE 2016; 6 (4) :2256-2264
URL: http://www.iust.ac.ir/ijae/article-1-366-fa.html
Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation. Automotive Science and Engineering. 1395; 6 (4) :2256-2264

URL: http://www.iust.ac.ir/ijae/article-1-366-fa.html


چکیده:   (23250 مشاهده)

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them suitable choices to use in vehicle navigation problems. However, these sensors have some deterministic and stochastic error sources. These errors could diverge sensor outputs from the real values. Therefore, calibration of the inertial sensors is one of the most important processes that should be done in order to have the exact model of dynamical behaviors of the vehicle. In this paper, a new method, based on artificial neural network, is presented for the calibration of an inertial accelerometer applied in the vehicle navigation. Levenberg-Marquardt algorithm is used to train the designed neural network. This method has been tested in real driving scenarios and results show that the presented method reduces the root mean square error of the measured acceleration up to 96%. The presented method can be used in managing the traffic flow and designing collision avoidance systems.

متن کامل [PDF 750 kb]   (6293 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: موتور احتراق داخلی

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بین‌المللی مهندسی خودرو می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Automotive Science and Engineering

Designed & Developed by : Yektaweb