Showing 2 results for Vibration Control
A. Abdelraheem Farghaly,
Volume 2, Issue 4 (10-2012)
Abstract
High tall buildings are more susceptible to dynamic excitations such as wind and seismic excitations. In this paper, design procedure and some current applications of tuned mass damper (TMD) were studied. TMD was proposed to study response of 20 storey height building to seismic excitations using time history analysis with and without the TMD.
The study indicates that the response of structures such as storey displacements and shear force of columns can be dramatically reduced by using TMD groups with specific arrangement in the model. The study illustrates the group of four TMDs distributed on the plane can be effective as reinforced concrete core shear wall.
A. Gholizad , S. D. Ojaghzadeh Mohammadi,
Volume 4, Issue 1 (3-2014)
Abstract
Structural vibration control is one of the most important features in structural engineering. Real-time information about seismic resultant forces is required for deciding module of intelligent control systems. Evaluation of lateral forces during an earthquake is a complicated problem considering uncertainties of gravity loads amount and distribution and earthquake characteristics. An artificial neural network (ANN) has been trained in this article to estimate these forces. This ANN was trained on the results of time history analysis of a three-story building under 702 different loadings. Results of numerical examples verify that the trained ANN can predict the expected forces with negligible deviations.