Search published articles


Showing 5 results for Truss Optimization

A. Ahrari, A. A. Atai,
Volume 3, Issue 2 (6-2013)
Abstract

The prevalent strategy in the topology optimization phase is to select a subset of members existing in an excessively connected truss, called Ground Structure, such that the overall weight or cost is minimized. Although finding a good topology significantly reduces the overall cost, excessive growth of the size of topology space combined with existence of varied types of design variables challenges applicability of evolutionary algorithms tailored for simultaneous optimization of topology, shape and size (TSS) in more complicated cases which are of great practical interest. In practice, large-scale truss structures are often modular, formed by joining periodically repeated units. This article organizes a novel simulation approach for this class of truss structures where the main drawbacks of the ground structure-based simulation approach are greatly moderated. The two approaches are independently employed for simultaneous TSS optimization of a modular truss example and the size of topology space as well as the required computation budget to generate an acceptable candidate design is compared. Result comparison reveals by employing the novel approach, problem complexity grows linearly with respect to the number of modules which allows for expanding application of TSS optimizers to complex modular trusses. Use of relative coordinates is also warranted for shape optimization which concludes to a more efficient optimization process.
A. Kaveh , P. Hosseini,
Volume 4, Issue 3 (9-2014)
Abstract

Simplified Dolphin Echolocation (SDE) optimization is an improved version of the Dolphin Echolocation optimization. The dolphin echolocation (DE) is a recently proposed metaheuristic algorithm, which was imitated dolphin’s hunting process. The global or near global optimum solution modeled as dolphin’s bait, dolphins send sound in different directions to discover the best bait among their search space. This paper introduced a new optimization method called SDE for weight optimization of steel truss structures problems. SDE applies some new approaches for generating new solutions. These improvements enhance the accuracy and convergence rate of the DE SDE does not depend on any empirical parameter. The results of the SDE for mathematical and engineering optimization problems are compared to those of the standard DE and some popular metaheuristic algorithms. The results show that SDE is competitive with other algorithms.
T. Bakhshpoori,
Volume 12, Issue 1 (1-2022)
Abstract

Metaheuristics are considered the first choice in addressing structural optimization problems. One of the complicated structural optimization problems is the highly nonlinear dynamic truss shape and size optimization with multiple natural frequency constraints. On the other hand, natural frequency constraints are useful to control the responses of a dynamically exciting structure. In this regard, this study uses for the first time the water evaporation optimization (WEO) algorithm to address this problem. Four benchmark trusses are considered for experimental investigation of the WEO. Obtained results indicate the comparative performance of WEO to the best-known algorithms in this problem, high performance in comparison to those of different optimization techniques, and high performance in comparison to all algorithms in terms of robustness. The simulation results clearly show a good balance between the global and local exploration abilities of WEO and its potential robust efficiency for other complicated constrained engineering optimization problems.
F. Biabani, A. Razzazi, S. Shojaee, S. Hamzehei-Javaran,
Volume 12, Issue 3 (4-2022)
Abstract

Presently, the introduction of intelligent models to optimize structural problems has become an important issue in civil engineering and almost all other fields of engineering. Optimization models in artificial intelligence have enabled us to provide powerful and practical solutions to structural optimization problems. In this study, a novel method for optimizing structures as well as solving structure-related problems is presented. The main purpose of this paper is to present an algorithm that addresses the major drawbacks of commonly-used algorithms including the Grey Wolf Optimization Algorithm (GWO), the Gravitational Search Algorithm (GSA), and the Particle Swarm Optimization Algorithm (PSO), and at the same time benefits from a high convergence rate. Also, another advantage of the proposed CGPGC algorithm is its considerable flexibility to solve a variety of optimization problems. To this end, we were inspired by the GSA law of gravity, the GWO's top three search factors, the PSO algorithm in calculating speed, and the cellular machine theory in the realm of population segmentation. The use of cellular neighborhood reduces the likelihood of getting caught in the local optimal trap and increases the rate of convergence to the global optimal point. Achieving reasonable results in mathematical functions (CEC 2005) and spatial structures (with a large number of variables) in comparison with those from GWO, GSA, PSO, and some other common heuristic algorithms shows an enhancement in the performance of the introduced method compared to the other ones.
 
S. L. Seyedoskouei, Dr. R. Sojoudizadeh, Dr. R. Milanchian, Dr. H. Azizian,
Volume 14, Issue 3 (6-2024)
Abstract

The optimal design of structural systems represents a pivotal challenge, striking a balance between economic efficiency and safety. There has been a great challenge in balancing between the economic issues and safety factors of the structures over the past few decades; however, development of high-speed computing systems enables the experts to deal with higher computational efforts in designing structural systems. Recent advancements in computational methods have significantly improved our ability to address this challenge through sophisticated design schemes. The main purpose of this paper is to develop an intelligent design scheme for truss structures in which an optimization process is implemented into this scheme to help the process reach lower weights for the structures. For this purpose, the Artificial Rabbits Optimization (ARO) algorithm is utilized as one of the recently developed metaheuristic algorithms which mimics the foraging behaviour of the rabbits in nature. In order to reach better solutions, the improved version of this algorithm is proposed as I-ARO in which the well-known random initialization process is substituted by the Diagonal Linear Uniform (DLU) initialization procedure. For numerical investigations, 5 truss structures 10, 25, 52, 72, and 160 elements are considered in which stress and displacement constraints are determined by considering discrete design variables. By conducting 50 optimization runs for each truss structure, it can be concluded that the I-ARO algorithm is capable of reaching better solutions than the standard ARO algorithm which demonstrates the effects of DLU in enhancing this algorithm’s search behaviour.
 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb