Search published articles


Showing 2 results for Silica Fume

P. Muthupriya, K. Subramanian, B.g. Vishnuram,
Volume 1, Issue 1 (3-2011)
Abstract

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these models, training and testing using the available experimental results for 140 specimens produced with 7 different mixture proportions are used. The data used in the multi-layer feed forward neural networks models are designed in a format of eight input parameters covering the age of specimen, cement, metakaolin (MK), fly ash (FA), water, sand, aggregate and superplasticizer and in another set of specimen which contain SF instead of MK. According to these input parameters, in the multi-layer feed forward neural networks models are used to predict the compressive strength and durability values of concrete. It shown that neural networks have high potential for predicting the compressive strength and durability values of the concretes containing metakaolin, silica fume and fly ash.
J. Sobhani, M. Ejtemaei, A. Sadrmomtazi, M. A. Mirgozar,
Volume 9, Issue 2 (4-2019)
Abstract

Lightweight concrete (LWC) is a kind of concrete that made of lightweight aggregates or gas bubbles. These aggregates could be natural or artificial, and expanded polystyrene (EPS) lightweight concrete is the most interesting lightweight concrete and has good mechanical properties. Bulk density of this kind of concrete is between 300-2000 kg/m3. In this paper flexural strength of EPS is modeled using four regression models, nine neural network models and four adaptive Network-based Fuzzy Interface System model (ANFIS). Among these models, ANFIS model with Bell-shaped membership function has the best results and can predict the flexural strength of EPS lightweight concrete more accurately.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb