Search published articles


Showing 7 results for Radial Basis Function

R. Kamyab, E. Salajegheh,
Volume 1, Issue 3 (9-2011)
Abstract

This study deals with predicting nonlinear time history deflection of scallop domes subject to earthquake loading employing neural network technique. Scallop domes have alternate ridged and grooves that radiate from the centre. There are two main types of scallop domes, lattice and continuous, which the latticed type of scallop domes is considered in the present paper. Due to the large number of the structural nodes and elements of scallop domes, nonlinear time history analysis of such structures is time consuming. In this study to reduce the computational burden radial basis function (RBF) neural network is utilized. The type of inputs of neural network models seriously affects the computational performance and accuracy of the network. Two types of input vectors: cross-sectional properties and natural periods of the structures can be employed for neural network training. In this paper the most influential natural periods of the structure are determined by adaptive neuro-fuzzy inference system (ANFIS) and then are used as the input vector of the RBF network. Results of illustrative example demonstrate high performance and computational accuracy of RBF network.
S. Gholizadeh, M.r. Sheidaii , S. Farajzadeh,
Volume 2, Issue 1 (3-2012)
Abstract

The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the variable length of span and height are considered. Back-propagation (BP), radial basis function (RBF) and generalized regression (GR) neural networks are trained for efficiently prediction of the seismic design of the structures. The numerical results demonstrate the superiority of the GR over the BP and RBF neural networks.
S. Shojaee, M. Mohamadianb , N. Valizadeh,
Volume 2, Issue 1 (3-2012)
Abstract

In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular locations of materials in the structure is used and find the optimal distribution of material in the domain to minimize the compliance of the system under a volume constraint. The refinement is employed for construction of the physical mesh to be consistent with the mesh is used for level set function. Then a parameterized level set method with radial basis functions (RBFs) is used for structural topology optimization. Finally, several numerical examples are provided to confirm the validity of the method.
M.r. Ghasemi, E. Barghi,
Volume 2, Issue 3 (7-2012)
Abstract

In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavior of MR dampers. The Modified Bouc-Wen model is an appropriate model that has an acceptable accuracy in calculating the generated force of dampers compared to others. In this model displacement and voltage of a MR damper are known while the force generated by MR damper is considered as the unknown. Because of highly nonlinear characteristics of modified bouc-wen model determination of inverse dynamic behavior of MR dampers are generally done using ANNs and ANFIS. Since the ANNs and ANFIS have different mechanisms for emulating desired functions, their responses may be different. In this research the performance of a Back Propagation Neural Network (BPNN), Radial Basis Functions Neural Network (RBFNN) and ANFIS in estimating the inverse dynamic behavior of MR dampers are compared. The results emphasize on the advancement of ANFIS to the other methods studied in estimation of inverse dynamic behavior of MR dampers.
S. Gholizadeh, P. Torkzadeh, S. Jabarzadeh,
Volume 3, Issue 1 (3-2013)
Abstract

In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on stress and slenderness of the elements besides the vertical displacements of the joints. To achieve the optimization task a variant of particle swarm optimization (PSO) entitled as quantum-behaved particle swarm optimization (QPSO) algorithm is employed. The computational burden of the optimization process due to performing time history analysis is very high. In order to decrease the optimization time, the radial basis function (RBF) neural networks are employed to predict the desired responses of the structures during the optimization process. The numerical results demonstrate the effectiveness of the presented methodology
M. Araghi, M. Khatibinia,
Volume 9, Issue 2 (4-2019)
Abstract

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel functions in order to improve the learning and generalization ability of WLS–SVM. In the proposed method, a linear convex combination of the radial basis function (RBF) and Morlet wavelet kernel functions is adopted, which are considered as the most popular kernel functions. To validate the efficiency of the proposed method, experiments are conducted on a database including 118 uniaxial dynamic creep test results. The results of the statistical criteria show a good agreement between the predicted and measured flow number values. Further, the simulation results demonstrate that the proposed MK–SVM approach has more superior performance than the single kernel based WLS–SVM and other methods found in the literature.
A. Kaveh, A. Eskandari,
Volume 11, Issue 1 (1-2021)
Abstract

The artificial neural network is such a model of biological neural networks containing some of their characteristics and being a member of intelligent dynamic systems. The purpose of applying ANN in civil engineering is their efficiency in some problems that do not have a specific solution or their solution would be very time-consuming. In this study, four different neural networks including FeedForward BackPropagation (FFBP), Radial Basis Function (RBF), Extended Radial Basis Function (ERBF), and Generalized Regression Neural Network (GRNN) have been efficiently trained to analyze large-scale space structures specifically double-layer barrel vaults focusing on their maximum element stresses. To investigate the efficiency of the neural networks, an example has been done and their corresponding results have been compared with their exact amounts obtained by the numerical solution.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb