Showing 4 results for Prediction
M. Feizbakhsh , M. Khatibinia,
Volume 7, Issue 3 (7-2017)
Abstract
This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their performances are comparatively evaluated in order to find the best prediction model. In this study, SCC mixtures containing different percentage of nano SiO2 (NS), nano–TiO2 (NT), nano–Al2O3 (NA), also binary and ternary combining of these nanoparticles are selected. The results indicate that the PSOPC–ANFIS approach in comparison with the ANFIS and ANN techniques obtains an improvement in term of generalization and predictive accuracy. Although, the ANFIS and ANN techniques are a suitable model for this purpose, PSO integrated with the ANFIS is a flexible and accurate method due tothe stronger global search ability of the PSOPC algorithm.
S. Philip Bamiyo, O. Austine Uche , M. Adamu,
Volume 7, Issue 4 (10-2017)
Abstract
Reinforced concrete (RC) slabs exhibit complexities in their structural behavior under load due to the composite nature of the material and the multitude and variety of factors that affect such behavior. Current methods for determining the load-deflection behavior of reinforced concrete slabs are limited in scope and are mostly dependable on the results of experimental tests. In this study, an alternative approach using Artificial Neural Network (ANN) model is produced to predict the load-deflection behavior of a two-way RC slab. In the study, 30 sets of RC slab specimens of sizes 700mm x 600mm x 75mm were cast, cured for 28days using the sprinkling method of curing and tested for deflection experimentally by applying loads ranging from 10kN to 155kN at intervals of 5kN. ANN model was then developed using the neural network toolbox of ANN in MATLAB version R2015a using back propagation algorithm. About 54% of the RC specimens were used for the training of the network while 23% of the sets were used for validation leaving the remaining 23 % for testing the network. The experimental test results show that the higher the applied load on the slab, the higher the deflection. The result of the ANN model shows a good correlation between the experimental test and the predicted results with training, validation and test correlation coefficients of 0.99692, 0.98921 and 0.99611 respectively. It was also found that ANN model is quite efficient in determining the deflection of 2-way RC slab. The predicted accuracy of performance value for the load-deflection set falls at 96.67% of the experimental load-deflection with a 0.31% minimum error using the Microsoft spreadsheet model. As such the comprehensive spreadsheet tool created to incorporate the optimum neural network. The spreadsheet model uses the Microsoft version 2013 excel tool software and can be used by structural engineers for instantaneous access to the prediction if any aspect of a concrete slab behavior given minimal data to describe the slab and the loading condition.
A. Kaveh, S. M. Hamze-Ziabari, T. Bakhshpoori,
Volume 8, Issue 2 (8-2018)
Abstract
In the present study, the multivariate adaptive regression splines (MARS) technique is employed to estimate the drying shrinkage of concrete. To this purpose, a very big database (RILEM Data Bank) from different experimental studies is used. Several effective parameters such as the age of onset of shrinkage measurement, age at start of drying, the ratio of the volume of the sample on its drying surface, relative humidity, cement content, the ratio between water and cement contents, the ratio of sand on total aggregate, average compressive strength at 28 days, and modulus of elasticity at 28 days are included in the developing process of MARS model. The performance of MARS model is compared with several codes of practice including ACI, B3, CEB MC90-99, and GL2000. The results confirmed the superior capability of developed MARS model over existing design codes. Furthermore, the robustness of the developed model is also verified through sensitivity and parametric analyses.
A. A. Saberi, H. Ahmadi, D. Sedaghat Shayegan , A. Amirkardoust,
Volume 13, Issue 1 (1-2023)
Abstract
Energy production and consumption play an important role in the domestic and international strategic decisions globally. Monitoring the electric energy consumption is essential for the short- and long-term of sustainable development planned in different countries. One of the advanced methods and/or algorithms applied in this prediction is the meta-heuristic algorithm. The meta-heuristic algorithms can minimize the errors and standard deviations in the data processing. Statistically, there are numerous methods applicable in the uncertainty analysis and in realizing the errors in the datasets, if any. In this article, the Mean Absolute Percentage Error (MAPE) is used in the error’s minimization within the relevant algorithms, and the used dataset is actually relating to the past fifty years, say from 1972 to 2021. For this purpose, the three algorithms such as the Imputation–Regularized Optimization (IRO), Colliding Bodies Optimization (CBO), and Enhanced Colliding Bodies Optimization (ECBO) have been used. Each one of the algorithms has been implemented for the two linear and exponential models. Among this combination of the six models, the linear model of the ECBO meta-heuristic algorithm has yielded the least error. The magnitude of this error is about 3.7%. The predicted energy consumption with the winning model planned for the year 2030 is about 459 terawatt-hours. The important socio-economical parameters are used in predicting the energy consumption, where these parameters include the electricity price, Gross Domestic Product (GDP), previous year's consumption, and also the population. Application of the meta-heuristic algorithms could help the electricity generation industries to calculate the energy consumption of the approaching years with the least error. Researchers should use various algorithms to minimize this error and make the more realistic prediction.