Search published articles


Showing 2 results for Passive Control

M. Mohebbi,
Volume 3, Issue 2 (6-2013)
Abstract

Tuned mass damper (TMD) have been studied and installed in structures extensively to protect the structures against lateral loads. Multiple tuned mass dampers (MTMDs) which include a number of TMDs with different parameters have been proposed for improving the performance of single TMDs. When the structural system is considered as multiple degrees of freedom (MDOF) and implemented with MTMDs, there is no effective closed-form solution to determine the optimal parameters of MTMDs. On the other hand designing optimal MTMDs include a large number of variables. For optimal design of MTMDs, in this research an effective method has been proposed in which the parameters of TMDs are determined based on minimizing the Hankel’s norm of structure. Since the optimization procedure includes a large number of variables, hence it has been decided to use Genetic Algorithms (GAs) for determining the variables. For numerical simulation, the method has been utilized on an eight-storey shear frame modeled as MDOF, and optimal MTMDs have been designed. The results show that using the Hankel’s norm of structure as objective function has led to design effective MTMDs which could be effective in reducing the response of structure, especially the average value, under different far-field and near-field earthquakes. Also it has been found that the method is effective regarding its simplicity and convergence in solving complex optimization problem. Through extensive numerical analysis the effect of MTMDs mass ratio and TMDs number in MTMDs has been studied.
M. Ramezani, M. R. Mohammadizadeh, S. Shojaee,
Volume 13, Issue 2 (4-2023)
Abstract

In recent years, there has been a lot of interest in the development and deployment of control methods that use different components of the building to mitigate the seismic response of the structure. Meanwhile, the building facade, as a non-structural component, can be a suitable alternative in affecting the structure's behavior because of its role as an envelope of the building with a significant weight. Among the modular cladding systems, the Double Skin Facade (DSF) can be considered a passive system due to the distance of the exterior layer from the main structure and sufficient continuity and rigidity.  In this study, DSF systems are used as Peripheral Mass Dampers (PMDs) that control structural movements by dissipating energy during strong motions. The PMD system provides a building with several inherent dampers without the need for extra mass. To show the reliability and efficiency of the proposed approach, the PMD model is investigated and compared with results available in uncontrolled and Tuned Mass Damper (TMD) models. The PMD model is examined in three structural frames with 10, 20, and 30 stories with the extreme Mass Ratios (MRs) of 5% to 20%. The Particle Swarm Optimization (PSO) is performed on damper parameters of PMD and TMD systems to minimize structural responses. The results demonstrate that an optimal PMD system with multiple inherent mass dampers outperforms a single TMD system.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb