Search published articles


Showing 2 results for Magneto-Rheological Damper

M. Mohebbi, H. Dadkhah,
Volume 9, Issue 1 (1-2019)
Abstract

Hybrid control system composed of a base isolation system and a magneto-rheological damper so-called smart base isolation is one of effective semi-active control system in controlling the seismic response of structures. In this paper, a design method is proposed for designing the smart base isolation system in order to achieve an effective performance under multiple earthquakes. The base mass, the base stiffness and the weighting parameter of H2/linear quadratic Gaussian control algorithm, which is used to determine the desired control force, have been considered as the design variables and different earthquake records have been considered as design earthquakes. First, the optimum values of these variables under each of the considered earthquakes have been determined by using the genetic algorithm and then, an optimum control system has been designed with multiple earthquakes-based design approach. The defined design objective is minimizing the peak base drift while the peak inter-story drift has been constrained. For numerical simulation, smart base isolation system is designed for controlling a four-story shear frame. The results show that when the control system designed for a specific earthquake is subjected to another earthquake, difference between the performance of this control system and the optimal case under that earthquake is considerable. Hence, the specific earthquake-based design approach is an inappropriate design procedure for smart base isolation. Also, it has been found that control system designed based on multiple earthquakes-based design approach shows effective performance in controlling the response of structure under a wide range of earthquakes.
M. Nikpey, M. Khatibinia, H. Eliasi,
Volume 14, Issue 4 (10-2024)
Abstract

In recent years, semi-active control has been introduced as a promising method for the seismic control of structures, potentially combining the benefits of both passive and active control systems. Magneto-rheological damper (MR) is one of the semi-active devices and its dynamic model is expressed by the Bouc-Wen model. The sliding sector control (SSC) strategy as a robust control approach is a class of variable structure (VS) systems for linear and nonlinear continuous-time systems with a special type of sliding sector using a new equivalent sector control. The purpose of this study is to evaluate the effectiveness of the SSC strategy in determining the optimal voltage of MR at each step of time. For a numerical example, a three-story benchmark shear structure is considered subjected to normal (100%), high (150%), and low (50%) excitation levels of the El Centro earthquake. The results of the numerical simulations show that the semi-active control system consisting of the SSC strategy and an MR damper can be beneficial in reducing the seismic responses of structures. Furthermore, the efficiency of the SSC strategy is also compared against that of the fuzzy and clipped-optimal controllers. Comparative results of the numerical simulation confirm the robustness and ability of the SSC strategy.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb