Search published articles


Showing 4 results for Fuzzy Logic

M. Shahrouzi, H. Farah-Abadi,
Volume 8, Issue 1 (1-2018)
Abstract

The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle swarm optimization is employed as the core of a multi-objective optimization framework with a repository to save Pareto solutions. The proposed method is tested on a variety of benchmark functions and structural sizing examples. Results show that it can provide Pareto front by lower computational time in competition with some other popular multi-objective algorithms.


M. Zabihi-Samani, M. Ghanooni-Bagha,
Volume 8, Issue 1 (1-2018)
Abstract

An optimal semi-active Cuckoo- Fuzzy algorithm is developed to drive the hydraulic semi-active damper for effective control of the dynamic deformation of building structures under earthquake loadings, in this paper. Hydraulic semi-active dampers (MR dampers) are semi active control devices that are managed by sending external voltage supply. A new adaptive fuzzy logic controller (FLC) is introduced to manage MR damper intelligently. Furthermore, a novel evolutionary algorithm of cuckoo search (CS) was employed to optimize the placement and the number of MR dampers and sensors in the sense of minimum resultant vibration magnitude. Numerical efforts were accomplished to validate the efficiency of proposed FLC. In designer’s point of view, the proposed CS-FLC controller can find the optimal solutions during a reasonable number of iterations. Finally, The simulation results show that the developed semi‐active damper can significantly enhance the seismic performance of the buildings in terms of controlled story drift and roof displacement and acceleration. CS-FLC controller uses less input energy and could find the appropriate control force and attenuates the excessive responses in several buildings. The findings in this study will help engineers to design control systems for seismic risk mitigation and effectively facilitate the performance‐based seismic design.


M. Sheikhi Azqandi, M. Arjmand,
Volume 10, Issue 2 (4-2020)
Abstract

This research presents a novel design approach to achieve an optimal structure established upon multiple objective functions by simultaneous utilization of the Enhanced Time Evolutionary Optimization method and Fuzzy Logic (FLETEO). For this purpose, at first, modeling of the structure design problem in this space is performed using fuzzy logic concepts. Thus, a new problem creates with functions and constraints regarding the design in fuzzy space as well as membership functions corresponded to every single of them. Then, the problem is solved by means of the Enhanced Time Evolutionary Optimization method (ETEO), eventually, based on the acquired results, the values of optimal design variables are obtained in the main problem. In the current paper, to validate the proposed approach and evaluate its performance, the optimal design of several standard structures has been carried out. Comparing the acquired results and previous ones is an indication of the high power of the proposed method in finding the best possible design with high convergence speed and deprived of contravening the constraints governing the problems.
M. Payandeh-Sani , B. Ahmadi-Nedushan,
Volume 13, Issue 2 (4-2023)
Abstract

In this study, the response of semi-actively controlled structures is investigated, with a focus on the effects of magneto-rheological (MR) damper distribution on the seismic response of structures such as drift and acceleration. The proposed model is closed loop, and the structure's response is used to determine the optimal MR damper voltage. A Fuzzy logic controller (FLC) is employed to calculate the optimum voltage of MR dampers. Drifts and velocities of the structure’s stories are used as FLC inputs. The FLC parameters and the distribution of MR dampers across stories are determined using the NSGA-II, when the structure is subjected to the El-Centro earthquake, so as to minimize the peak inter-story drift ratio and peak acceleration simultaneously. The efficiency of the proposed approach is illustrated through a twenty-story nonlinear benchmark structure. Non-dominated solutions are obtained to minimize the inter-story drift and acceleration of structures and Pareto front produced. Then, the non-dominated solutions are used to control the seismic response of the benchmark structure, which was subjected to the Northridge, Kobe, and Hachinohe earthquake records. In the numerical example the maximum drift and acceleration decrease by about 36.3% and 15%, respectively, in the El-Centro earthquake. The results also demonstrate that the proposed controller is more efficient in reducing drift than reducing acceleration.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb