Search published articles


Showing 2 results for Collapse Margin Ratio

M. Danesh, S. Gholizadeh, C. Gheyratmand,
Volume 9, Issue 3 (6-2019)
Abstract

The main aim of the present study is to optimize steel moment frames in the framework of performance-based design and to assess the seismic collapse capacity of the optimal structures. In the first phase of this study, four well-known metaheuristic algorithms are employed to achieve the optimization task. In the second phase, the seismic collapse safety of the obtained optimal designs is evaluated by conducting incremental dynamic analysis and generating fragility curves. Three illustrative examples including 3-, 6-, and 12-story steel moment frames are presented. The numerical results demonstrate that all the performance-based optimal designs obtained by the metahuristic algorithms are of acceptable collapse margin ratio.
M. Ghasemiazar, S. Gholizadeh,
Volume 12, Issue 1 (1-2022)
Abstract

This study is devoted to seismic collapse safety analysis of performance based optimally seismic designed steel chevron braced frame structures. An efficient meta-heuristic algorithm namely, center of mass optimization is utilized to achieve the seismic optimization process. The seismic collapse performance of the optimally designed steel chevron braced frames is assessed by performing incremental dynamic analysis and determining their adjusted collapse margin ratios. Two design examples of 5-, and 10-story chevron braced frames are illustrated. The numerical results demonstrate that all the performance-based optimal designs are of acceptable seismic collapse safety.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb