Search published articles


Showing 8 results for Acceleration

A. Nozari , H.e. Estekanchi,
Volume 1, Issue 2 (6-2011)
Abstract

Numerical simulation of structural response is a challenging issue in earthquake engineering and there has been remarkable progress in this area in the last decade. Endurance Time (ET) method is a new response history based analysis procedure for seismic assessment and structural design in which structures are subjected to a gradually intensifying dynamic excitation and their seismic performance is evaluated based on their responses at different excitation levels. Generating appropriate artificial dynamic excitation is essential in this type of analysis. In this paper, an optimization procedure is presented for computation of the intensifying acceleration functions utilized in the ET method and the results of this procedure are discussed. A set of the ET acceleration functions (ETAFs) is considered which has been produced utilizing numerical optimization considering 2048 acceleration points as optimization variables by an unconstrained optimization procedure. The ET formulation is then modified from the continuous time condition into the discrete time state thus the optimization problem is reformulated as a nonlinear least squares problem. In this way, a second set of the ETAFs is generated which better satisfies the proposed objective function. Subsequently, acceleration points are increased to 4096, for 40 seconds duration, and the third set of the ETAFs is produced using a multi level optimization procedure. Improvement of the ETAFs is demonstrated by analyzing several SDOF systems.
A. Bagheria, G. Ghodrati Amirib, M. Khorasanib , J. Haghdoust,
Volume 1, Issue 4 (12-2011)
Abstract

The main objective of this study is to present new method on the basis of genetic algorithms for attenuation relationship determination of horizontal peak ground acceleration and spectral acceleration. The proposed method employs the optimization capabilities of genetic algorithm to determine the coefficients of attenuation relationships of peak ground and spectral accelerations. This method has been applied to 361 Iranian earthquake records with magnitudes between 4.5 and 7.4 obtained from two seismic zones, namely Zagros and Alborz-Central Iran. The obtained results indicated that the proposed method can be characterized as a powerful tool for prediction horizontal peak ground and spectral accelerations.
A. Kaveh , V.r. Mahdavi,
Volume 2, Issue 2 (6-2012)
Abstract

Endurance Time Acceleration Functions are specially predesigned intensifying excitation functions that their amplitude increases with time. On the other hand, wavelet transform is a mathematical tool that indicates time variations of frequency in a signal. In this paper, an approach is presented for generating endurance time acceleration functions (ETAFs) whose response spectrum is compatible with the European Code regulations (EC8) elastic spectrum. Method applied is a modification of data in time and frequency domain. For this purpose, wavelet transform has been used to decompose a series of random points to several levels such that each level covers a special range of frequency, then every level is divided into the numbers of equal time intervals and each interval of time is multiplied by a variable. Subsequently, the mathematical unconstrained optimization algorithm is used to calculate the variables and minimize error between response and target spectra. The prosed procedure is used in two methods. Then with two methods, two different acceleration functions are produced.
M. A. Shayanfar, A. Kaveh, O. Eghlidos , B. Mirzaei,
Volume 6, Issue 2 (6-2016)
Abstract

In  this  paper,  a  method  is  presented  for  damage  detection  of  bridges  using  the  Enhanced Colliding Bodies Optimization (ECBO)  utilizing time-domain responses. The finite element modeling of the structure is based on  the equation of motion under the moving load, and the flexural stiffness of the structure is determined by the acceleration responses obtained via sensors placed in different places. Damage detection problem presented in this research is an inverse  problem,  which  is  optimized  by  the  ECBO  algorithm,  and  the  damages  in  the structures  are  fully  detected.  Furthermore,  for  simulating  the  real  situation,  the  effect  of measured noises is considered on the structure, to obtain more accurate results.


M. Khatibinia, H. Gholami, S. F. Labbafi,
Volume 6, Issue 4 (10-2016)
Abstract

Tuned  mass  dampers  (TMDs)  are  as  a  efficient  control  tool  in  order  to  reduce  undesired vibrations  of  tall  buildings  and  large–span  bridges  against  lateral  loads  such  as  wind  and earthquake. Although many researchers has been widely  investigated  TMD systems  due to its  simplicity  and  application,  the  optimization  of  parameters  and  placement  of  TMD  are challenging tasks. Furthermore, ignoring the effects of soil–structure interaction (SSI) may lead to unrealistic desig of structure and its dampers. Hence, the  effects of SSI should be considered  in  the  design  of  TMD.  Therefore,  the  main  aim  of  this  study  is  to  optimize parameters  of  TMD  subjected  to  earthquake  and  considering  the  effects  of  SSI.  In  this regard,  the  parameters  of  TMD  including  mass,  stiffness  and   damping  optimization  are considered  as  the  variables  of  optimization.  The  maximum  absolute  displacement  and acceleration of structure are also simultaneously selected as objective functions. The multi –objective particle  swarm optimization  (MOPSO) algorithm  is adopted  to find  the  optimal parameters  of  TMD.  In  this  study,  the  Lagrangian  method  is  utilized  for  obtaining  the equations of motion for SSI system, and the time domain analysis is implemented based on Newmark method. In order to investigate the effects of SSI in the optimal design of TMD, a 40 storey shear building with a TMD subjected to the El–Centro earthquake is considered. The  numerical  results  show  that  the  SSI  effects  have  the  significant  influence  on  the optimum parameters of TMD.


A. Kaveh, S. M. Hamze-Ziabari, T. Bakhshpoori,
Volume 8, Issue 1 (1-2018)
Abstract

In the present study, two new hybrid approaches are proposed for predicting peak ground acceleration (PGA) parameter. The proposed approaches are based on the combinations of Adaptive Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle Swarm Optimization (PSO). In these approaches, the PSO and GA algorithms are employed to enhance the accuracy of ANFIS model. To develop hybrid models, a comprehensive database from Pacific Earthquake Engineering Research Center (PEER) are used to train and test the proposed models. Earthquake magnitude, earthquake source to site distance, average shear-wave velocity, and faulting mechanisms are used as predictive parameters. The performances of developed hybrid models (PSO-ANFIS-PSO and GA-ANFIS-GA) are compared with the ANFIS model and also the most common soft computing approaches available in the literature. According to the obtained results, three developed models can be effectively used to predict the PGA parameter, but the comparison of models shows that the PSO-ANFIS–PSO model provides better results.


S. Fallahian, A. Joghataie , M.t. Kazemi,
Volume 8, Issue 3 (10-2018)
Abstract

An effective method utilizing the differential evolution algorithm (DEA) as an optimisation solver is suggested here to detect the location and extent of single and multiple damages in structural systems using time domain response method. Changes in acceleration response of structure are considered as a criterion for damage occurrence. The acceleration of structures is obtained using Newmark method. Damage is simulated by reducing the elasticity modulus of structural members. Three illustrative examples are numerically investigated, considering also measurement noise effect. All the numerical results indicate the high accuracy of the proposed method for determining the location and severity of damage.
M.r. Mohammadizadeh, E. Jahanfekr, S. Shojaee,
Volume 10, Issue 4 (10-2020)
Abstract

The purpose of the present study is the damage detection in the thin plates in terms of the wide application of such structures in various branches of engineering such as structural, mechanical, aerospace, shipbuilding, etc. using gradient-based second-order numerical optimization techniques. The technique used for optimization in this study is the second-order Levenberg-Marquardt algorithm (SOLMA). Using the acceleration response in a number of structural nodes under dynamic excitation, identification of the location and extent of damage in the plate elements are obtained by the proposed algorithm over an iterative cycle and by updating the sensitivity matrix. The damage has been assumed in the form of decreased modulus of elasticity in linear mode. A numerical problem has been solved and presented in order to verify and compare the proposed damage detection method with other methods. Also several numerical problems have been solved and its results have been presented in order to evaluate different scenarios such as one or more damages, small or large damage extent, absence or presence of noise with different levels, number of measured responses (number of sensors), position of measured points and the dynamic analysis time of the damage detection problem with the proposed method. The results show the appropriate accuracy, efficiency and performance of the proposed damage detection method.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb