Showing 2 results for Meta-Heuristic Optimization
M. A. Roudak, M. A. Shayanfar, M. Farahani, S. Badiezadeh, R. Ardalan,
Volume 14, Issue 2 (2-2024)
Abstract
Genetic algorithm is a robust meta-heuristic algorithm inspired by the theory of natural selection to solve various optimization problems. This study presents a method with the purpose of promoting the exploration and exploitation of genetic algorithm. Improvement in exploration ability is made by adjusting the initial population and adding a group of fixed stations. This modification increases the diversity among the solution population, which enables the algorithm to escape from local optimum and to converge to the global optimum even in fewer generations. On the other hand, to enhance the exploitation ability, increasing the number of selected parents is suggested and a corresponding crossover technique has been presented. In the proposed technique, the number of parents to generate offspring is variable during the process and it could be potentially more than two. The effectiveness of the modifications in the proposed method has been verified by examining several benchmark functions and engineering design problems.
M. Paknahad, P. Hosseini, A. R. Mazaheri, A. Kaveh,
Volume 15, Issue 2 (4-2025)
Abstract
This study presents a novel approach for optimizing critical failure surfaces (CFS) in homogeneous soil slopes by incorporating seepage and seismic effects through the Self-Adaptive Enhanced Vibrating Particle System (SA_EVPS) algorithm. The Finite Element Method (FEM) is employed to model fluid flow through porous media, while Bishop's simplified method calculates the Factor of Safety (FOS). Two benchmark problems validate the proposed approach, with results compared against traditional and meta-heuristic methods. The SA_EVPS algorithm demonstrates superior convergence and accuracy due to its self-adaptive parameter optimization mechanism. Visualizations from Abaqus simulations and comprehensive statistical analyses highlight the algorithm's effectiveness in geotechnical engineering applications. The results show that SA_EVPS consistently achieves lower FOS values with smaller standard deviations compared to existing methods, indicating more accurate identification of critical failure surfaces.