Showing 19 results for Gro
M. Shahrouzi,
Volume 1, Issue 1 (3-2011)
Abstract
Earthquake time history records are required to perform dynamic nonlinear analyses. In order to provide a suitable set of such records, they are scaled to match a target spectrum as introduced in the well-known design codes. Corresponding scaling factors are taken similar in practice however, optimizing them reduces extra-ordinary economic charge for the seismic design. In the present work a new hybrid meta-heuristic is developed combining key features from genotypic search and particle swarm optimization. The method is applied to an illustrative example via a parametric study to evaluate its effectiveness and less probability of premature convergence compared with the standard particle swarm optimization.
A. Kaveh, T. Bakhshpoori , E. Afshari,
Volume 1, Issue 4 (12-2011)
Abstract
This paper is concerned with the economical comparison between two commonly used configurations for double layer grids and determining their optimum span-depth ratio. Two ranges of spans as small and big sizes with certain bays of equal length in two directions and various types of element grouping are considered for each type of square grids. In order to carry out a precise comparison between different systems, optimum design procedure based on the Cuckoo Search (CS) algorithm is developed. The CS is a meta-heuristic algorithm recently developed that is inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior of some birds and insects. The design algorithm obtains minimum weight grid through appropriate selection of tube sections available in AISC Load and Resistance Factor Design (LRFD). Strength constraints of AISC-LRFD specification and displacement constraints are imposed on grids. The comparison is aimed at finding the depth at which each of the different configurations shows its advantages. The results are graphically presented from which the optimum depth can easily be estimated for each type, while the influence of element grouping can also be realized at the same time.
A. Bagheria, G. Ghodrati Amirib, M. Khorasanib , J. Haghdoust,
Volume 1, Issue 4 (12-2011)
Abstract
The main objective of this study is to present new method on the basis of genetic algorithms for attenuation relationship determination of horizontal peak ground acceleration and spectral acceleration. The proposed method employs the optimization capabilities of genetic algorithm to determine the coefficients of attenuation relationships of peak ground and spectral accelerations. This method has been applied to 361 Iranian earthquake records with magnitudes between 4.5 and 7.4 obtained from two seismic zones, namely Zagros and Alborz-Central Iran. The obtained results indicated that the proposed method can be characterized as a powerful tool for prediction horizontal peak ground and spectral accelerations.
S.k. Zeng, L.j. Li,
Volume 2, Issue 4 (10-2012)
Abstract
Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discrete variables and is tested by truss optimization problems. The optimization results are compared with that of the HPSO and GSO algorithm. The results show that the PS-GSO is able to accelerate the convergence rate effectively and has the fastest convergence rate among these three algorithms. The research shows the proposed PS-GSO algorithm can be effectively applied to optimal design of spatial structures with discrete variables.
A. Abdelraheem Farghaly,
Volume 2, Issue 4 (10-2012)
Abstract
High tall buildings are more susceptible to dynamic excitations such as wind and seismic excitations. In this paper, design procedure and some current applications of tuned mass damper (TMD) were studied. TMD was proposed to study response of 20 storey height building to seismic excitations using time history analysis with and without the TMD.
The study indicates that the response of structures such as storey displacements and shear force of columns can be dramatically reduced by using TMD groups with specific arrangement in the model. The study illustrates the group of four TMDs distributed on the plane can be effective as reinforced concrete core shear wall.
A. Ahrari, A. A. Atai,
Volume 3, Issue 2 (6-2013)
Abstract
The prevalent strategy in the topology optimization phase is to select a subset of members existing in an excessively connected truss, called Ground Structure, such that the overall weight or cost is minimized. Although finding a good topology significantly reduces the overall cost, excessive growth of the size of topology space combined with existence of varied types of design variables challenges applicability of evolutionary algorithms tailored for simultaneous optimization of topology, shape and size (TSS) in more complicated cases which are of great practical interest. In practice, large-scale truss structures are often modular, formed by joining periodically repeated units. This article organizes a novel simulation approach for this class of truss structures where the main drawbacks of the ground structure-based simulation approach are greatly moderated. The two approaches are independently employed for simultaneous TSS optimization of a modular truss example and the size of topology space as well as the required computation budget to generate an acceptable candidate design is compared. Result comparison reveals by employing the novel approach, problem complexity grows linearly with respect to the number of modules which allows for expanding application of TSS optimizers to complex modular trusses. Use of relative coordinates is also warranted for shape optimization which concludes to a more efficient optimization process.
J. Jin, L.j. Li, J.n. He,
Volume 4, Issue 1 (3-2014)
Abstract
A quick group search optimizer (QGSO) is an intelligent optimization algorithm which has been applied in structural optimal design, including the hinged spatial structural system. The accuracy and convergence rate of QGSO are feasible to deal with a spatial structural system. In this paper, the QGSO algorithm optimization is adopted in seismic research of steel frames with semi-rigid connections which more accurately reflect the practical situation. The QGSO is combined with the constraint from the penalty coefficients and dynamic time-history analysis. The performance of the QGSO on seismic design has been tested on a two-bay five-layer steel frame in this paper. The result shows that, compared with the PSO algorithm, the QGSO algorithm has better performance in terms of convergence rate and the ability to escape from local optimums. Moreover, it is feasible and effective to apply the QGSO to the seismic optimal design of steel framework.
L. J. Li, Z. H. Huang,
Volume 4, Issue 2 (6-2014)
Abstract
This paper presents an improved multi-objective group search optimizer (IMGSO) that is based on Pareto theory that is designed to handle multi-objective optimization problems. The optimizer includes improvements in three areas: the transition-feasible region is used to address constraints, the Dealer’s Principle is used to construct the non-dominated set, and the producer is updated using a tabu search and a crowded distance operator. Two objective optimization problems, the minimum weight and maximum fundamental frequency, of four truss structures were optimized using the IMGSO. The results show that IMGSO rapidly generates the non-dominated set and is able to handle constraints. The Pareto front of the solutions from IMGSO is clearly dominant and has good diversity.
M. Goharriz , S. M. Marandi,
Volume 6, Issue 3 (9-2016)
Abstract
During an earthquake, significant damage can result due to instability of the soil in the area affected by internal seismic waves. A liquefaction-induced lateral ground displacement has been a very damaging type of ground failure during past strong earthquakes. In this study, neuro-fuzzy group method of data handling (NF-GMDH) is utilized for assessment of lateral displacement in both ground slope and free face conditions. The NF-GMDH approach is improved using gravitational search algorithm (GSA). Estimation of the lateral ground displacements requires characterization of the field conditions, principally seismological, topographical and geotechnical parameters. The comprehensive database was used for development of the model obtained from different earthquakes. Contributions of the variables influencing the lateral ground displacement are evaluated through a sensitivity analysis. Performance of the NF-GMDH-GSA models are compared with those obtained from gene-expression programming (GEP) approach, and empirical equations in terms of error indicators parameters and the advantages of the proposed models over the conventional method are discussed. The results showed that the models presented in this research may serve as reliable tools to predict lateral ground displacement. It is clear that a precise correlation is easier to be used in the routine geotechnical projects compared with the field measurement techniques.
A. Csébfalvi,
Volume 6, Issue 3 (9-2016)
Abstract
In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equality relation, which practically means that the number of “interesting points” may be exactly one. The recent model resolves this weakness replacing the equality constraint with an inequality constraint. From engineering point of view it is a very important result because we can replace the inequality constraint with a set of inequality constraints without any difficulty. The other very important fact, that the modified displacement-oriented model can be extended very easily to handle stress-oriented relations, which will be demonstrated in the forthcoming paper. Naturally, the more general theoretical model needs more sophisticated numerical problem handling method. Therefore, we replaced the original “optimality-criteria-like” solution searching process with a standard nonlinear programming approach which is able to handle linear (nonlinear) objectives with linear (nonlinear) equality (inequality) constrains. The efficiency of the new approach is demonstrated by an example investigated by several authors. The presented example with reproducible numerical results as a benchmark problem may be used for testing the quality of exact and heuristic solution procedures to be developed in the future for displacement-constrained volume-minimization problems.
S. Alimollaie, S. Shojaee,
Volume 7, Issue 4 (10-2017)
Abstract
Optimization techniques can be efficiently utilized to achieve an optimal shape for arch dams. This optimal design can consider the conditions of the economy and safety simultaneously. The main aim is to present an applicable and practical model and suggest an algorithm for optimization of concrete arch dams to enhance their seismic performance. To achieve this purpose, a preliminary optimization is accomplished using PSO procedure in the first stage. Capabilities of Ansys Parametric Design Language (APDL) are applied for modeling the Dam-Foundation-Reservoir system. In the second stage with training the neural network, Group Method of Data Handling (GMDH) and replacement of Ansys analyst, optimal results have been achieved with the lowest error and less number of iteration respectively. Then a real world double-arch dam is presented to demonstrate the effectiveness and practicality of the PSO-GMDH. The numerical results reveal that the proposed method called PSO-GMDH provides faster rate and high searching accuracy to achieve the optimal shape of arch concrete dams and the modification and optimization of shape have a quite important role in increasing the safety against dynamic design loads.
A. Kaveh, S. M. Hamze-Ziabari, T. Bakhshpoori,
Volume 8, Issue 1 (1-2018)
Abstract
In the present study, two new hybrid approaches are proposed for predicting peak ground acceleration (PGA) parameter. The proposed approaches are based on the combinations of Adaptive Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle Swarm Optimization (PSO). In these approaches, the PSO and GA algorithms are employed to enhance the accuracy of ANFIS model. To develop hybrid models, a comprehensive database from Pacific Earthquake Engineering Research Center (PEER) are used to train and test the proposed models. Earthquake magnitude, earthquake source to site distance, average shear-wave velocity, and faulting mechanisms are used as predictive parameters. The performances of developed hybrid models (PSO-ANFIS-PSO and GA-ANFIS-GA) are compared with the ANFIS model and also the most common soft computing approaches available in the literature. According to the obtained results, three developed models can be effectively used to predict the PGA parameter, but the comparison of models shows that the PSO-ANFIS–PSO model provides better results.
A. K. Dixit, M. K. Roul, B. C. Panda,
Volume 8, Issue 1 (1-2018)
Abstract
The objective of this work is to predict the temperature of the different types of walls which are Ferro cement wall, reinforced cement concrete (RCC) wall and two types of cavity walls (combined RCC with Ferrocement and combined two Ferro cement walls) with the help of mathematical modeling. The property of low thermal transmission of small air gap between the constituents of combine materials has been utilized to obtain energy efficient wall section. Ferro cement is a highly versatile form of reinforced concrete made up of wire mesh, sand, water, and cement, which possesses unique qualities of strength and serviceability. The significant intention of the proposed technique is to frame a mathematical modeling with the aid of optimization techniques. Mathematical modeling is done by minimizing the cost and time consumed in the case of extension of the existing work. Mathematical modeling is utilized to predict the temperature of the different wall such as RCC wall, Ferro cement, combined RCC with Ferro cement and combined Ferro cement wall. The different optimization algorithms such as Social Spider Optimization (SSO), Genetic Algorithm (GA) and Group Search Optimization (GSO) are utilized to find the optimal weights α and β of the mathematical modeling. All optimum results demonstrate that the attained error values between the output of the experimental values and the predicted values are closely equal to zero with the SSO model. The results of the proposed work are compared with the existing methods and the minimum errors with SSO algorithm for the case of two combined RCC wall was found to be less than 2%.
A. Gholizad, S. Eftekhar Ardabili,
Volume 8, Issue 4 (10-2018)
Abstract
The existence of recorded accelerograms to perform dynamic inelastic time history analysis is of the utmost importance especially in near-fault regions where directivity pulses impose extreme demands on structures and cause widespread damages. But due to the scarcity of recorded acceleration time histories, it is common to generate proper artificial ground motions. In this paper an alternative approach is proposed to generate near-fault pulse-like ground motions. A smoothening approach is taken to extract directivity pulses from an ensemble of near-fault pulse-like ground motions. First, it is proposed to simulate nonpulse-type ground motion using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Wavelet Packet Transform (WPT). Next, the pulse-like ground motion is produced by superimposing directivity pulse on the previously generated nonpulse-type motion. The main objective of this study is to generate near-field spectrum compatible records. Particle Swarm Optimization (PSO) is employed to optimize both the parameters of pulse model and cluster radius in subtractive clustering and Principle Component Analysis (PCA) is used to reduce the dimension of ANFIS input vectors. Artificial records are generated for the first, second and third level of wavelet packet decomposition. Finally, a number of interpretive examples are presented to show how the method works. The results show that the response spectra of generated records are decently compatible with the target near-field spectrum, which is the main objective of the study.
M. Shahrouzi, A. Barzigar, D. Rezazadeh,
Volume 9, Issue 3 (6-2019)
Abstract
Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimization as a powerful meta-heuristic with several engineering applications. Special combination of static and dynamic opposition-based operators are hybridized with CBO so that its performance is enhanced. The proposed OCBO is validated in a variety of benchmark test functions in addition to structural optimization and optimal clustering. According to the results, the proposed method of opposition-based learning has been quite effective in performance enhancement of parameter-less colliding bodies optimization.
A. Kaveh, R. A. Izadifard, L. Mottaghi,
Volume 10, Issue 1 (1-2020)
Abstract
In structural design, either the experience of designer is used or a uniform grouping is usually utilized to group the elements. This type of grouping affects the fundamental cost of the buildings, including the cost of concrete, steel and formwork, as well as secondary costs such as laboratory, checking, fabrication and etc. However, the secondary costs are not usually considered in the cost function. Strategies can also be used to automate the grouping of members in structural design. In this strategy beams and columns are automatically grouped into a limited number of groups to achieve the lowest cost. In this study, enhanced colliding bodies optimization algorithm is used to automatically group the beams and columns of the reinforced concrete structures and also to optimize their cost. The proposed procedure applied to three reinforced concrete frames with four, eight and twelve stories and the influence of automatic grouping of the members in optimal cost is investigated. Using this method, the beams and columns are automatically grouped and the results show that the optimal cost obtained from the automatic grouping is less than the manual grouping of the members.
S. Sarjamei, M. S. Massoudi, M. Esfandi Sarafraz,
Volume 11, Issue 2 (5-2021)
Abstract
D. Sedaghat Shayegan, A. Amirkardoust,
Volume 13, Issue 3 (7-2023)
Abstract
In this article, spectral matching of ground motions is presented via the Mouth Brooding Fish (MBF) algorithm that is recently developed. It is based on mouth brooding fish life cycle. This algorithm utilizes the movements of the mouth brooding fish and their children’s struggle for survival as a pattern to find the best possible answer. For this purpose, wavelet transform is used to decompose the original ground motions to several levels and then each level is multiplied by a variable. Subsequently, this algorithm is employed to determine the variables and wavelet transform modifies the recorded accelerograms until the response spectrum gets close to a specified design spectrum. The performance of this algorithm is investigated through a numerical example and also it is compared with CBO and ECBO algorithms. The numerical results indicate that the MBF algorithm can to construct very promising results and has merits in solving challenging optimization problems.
M. A. Roudak, M. A. Shayanfar, M. Farahani, S. Badiezadeh, R. Ardalan,
Volume 14, Issue 2 (2-2024)
Abstract
Genetic algorithm is a robust meta-heuristic algorithm inspired by the theory of natural selection to solve various optimization problems. This study presents a method with the purpose of promoting the exploration and exploitation of genetic algorithm. Improvement in exploration ability is made by adjusting the initial population and adding a group of fixed stations. This modification increases the diversity among the solution population, which enables the algorithm to escape from local optimum and to converge to the global optimum even in fewer generations. On the other hand, to enhance the exploitation ability, increasing the number of selected parents is suggested and a corresponding crossover technique has been presented. In the proposed technique, the number of parents to generate offspring is variable during the process and it could be potentially more than two. The effectiveness of the modifications in the proposed method has been verified by examining several benchmark functions and engineering design problems.