Search published articles


Showing 2 results for Anfis.

A. Gholizad, S. Eftekhar Ardabili,
Volume 8, Issue 4 (10-2018)
Abstract

The existence of recorded accelerograms to perform dynamic inelastic time history analysis is of the utmost importance especially in near-fault regions where directivity pulses impose extreme demands on structures and cause widespread damages. But due to the scarcity of recorded acceleration time histories, it is common to generate proper artificial ground motions. In this paper an alternative approach is proposed to generate near-fault pulse-like ground motions. A smoothening approach is taken to extract directivity pulses from an ensemble of near-fault pulse-like ground motions. First, it is proposed to simulate nonpulse-type ground motion using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Wavelet Packet Transform (WPT). Next, the pulse-like ground motion is produced by superimposing directivity pulse on the previously generated nonpulse-type motion. The main objective of this study is to generate near-field spectrum compatible records. Particle Swarm Optimization (PSO) is employed to optimize both the parameters of pulse model and cluster radius in subtractive clustering and Principle Component Analysis (PCA) is used to reduce the dimension of ANFIS input vectors. Artificial records are generated for the first, second and third level of wavelet packet decomposition. Finally, a number of interpretive examples are presented to show how the method works. The results show that the response spectra of generated records are decently compatible with the target near-field spectrum, which is the main objective of the study.
J. Sobhani, M. Ejtemaei, A. Sadrmomtazi, M. A. Mirgozar,
Volume 9, Issue 2 (4-2019)
Abstract

Lightweight concrete (LWC) is a kind of concrete that made of lightweight aggregates or gas bubbles. These aggregates could be natural or artificial, and expanded polystyrene (EPS) lightweight concrete is the most interesting lightweight concrete and has good mechanical properties. Bulk density of this kind of concrete is between 300-2000 kg/m3. In this paper flexural strength of EPS is modeled using four regression models, nine neural network models and four adaptive Network-based Fuzzy Interface System model (ANFIS). Among these models, ANFIS model with Bell-shaped membership function has the best results and can predict the flexural strength of EPS lightweight concrete more accurately.
 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb