Search published articles


Showing 93 results for He

A. Farshidianfar, S. Soheili,
Volume 3, Issue 3 (9-2013)
Abstract

This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for high-rise structures considering Soil Structure Interaction (SSI) effects. Three optimization methods, namely the ant colony optimization (ACO) technique together with artificial bee colony (ABC) and shuffled complex evolution (SCE) methods are utilized for the optimization of TMD Mass, damping coefficient and spring stiffness as the design variables. The objective is to decrease the maximum displacement of structure. The 40 story structure with three soil types is employed to design TMD for six types of far field earthquakes. The results are then utilized to obtain relations for the optimized TMD parameters with SSI effects. The relations are then applied to design TMD for the same structure with another five types of far field oscillations, and reasonable results are achieved. For further investigations, the obtained relations are utilized to design TMD for a new structure, and the reduction values are obtained for five types of earthquakes, which show acceptable results. This study improves the understanding of earthquake oscillations, and helps the designers to achieve the optimized TMD for high-rise buildings.
W. Cheng, F. Liu , L.j. Li,
Volume 3, Issue 3 (9-2013)
Abstract

A novel optimization algorithm named teaching-learning-based optimization (TLBO) algorithm and its implementation procedure were presented in this paper. TLBO is a meta-heuristic method, which simulates the phenomenon in classes. TLBO has two phases: teacher phase and learner phase. Students learn from teachers in teacher phases and obtain knowledge by mutual learning in learner phase. The suitability of TLBO for size and geometry optimization of structures in structural optimal design was tested by three truss examples. Meanwhile, these examples were used as benchmark structures to explore the effectiveness and robustness of TLBO. The results were compared with those of other algorithms. It is found that TLBO has advantages over other optimal algorithms in convergence rate and accuracy when the number of variables is the same. It is much desired for TLBO to be applied to the tasks of optimal design of engineering structures.
P. Torkzadeh, Y. Goodarzi , E. Salajegheh,
Volume 3, Issue 3 (9-2013)
Abstract

In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal strain energy between the analytical models and the responses measured in damaged models using time history dynamic analysis data. In this paper, damages are modeled as a reduction of elasticity modulus of structural elements. The detection of structural damages is formulated as an unconstrained optimization problem that is solved by HPSO algorithm. To evaluate the performance of the proposed method, the results are compared with those provided in previous studies. To demonstrate the ability of this method for detection of multiple structural damages, different types of damage scenarios are considered. The results show that the proposed method can detect the exact locations and the severity of damages with a high accuracy in large-scale structures.
R. Sheikholeslami, A. Kaveh,
Volume 3, Issue 4 (10-2013)
Abstract

This article presents a comprehensive review of chaos embedded meta-heuristic optimization algorithms and describes the evolution of this algorithms along with some improvements, their combination with various methods as well as their applications. The reported results indicate that chaos embedded algorithms may handle engineering design problems efficiently in terms of precision and convergence and, in most cases they outperform the results presented in the previous works. The main goal of this paper is to providing useful references to fundamental concepts accessible to the broad community of optimization practitioners.
A. Zare Hosseinzadeh, A. Bagheri, G. Ghodrati Amiri,
Volume 3, Issue 4 (10-2013)
Abstract

In this paper, a two-stage method for damage detection and estimation in tall shear frames is presented. This method is based on the first mode shape of a shear frame. We demonstrate that the first mode shape slope is very sensitive to the story stiffness. Thus, at the first stage, by using the grey system theory on the first mode shape slope, damage locations are identified in shear frames. Damage severity is determined at the second stage by defining the damage detection problem as an optimization problem by using grey relation coefficients. The optimization problem is solved by a socio-politically motivated global search strategy which is the imperialist competitive algorithm. The efficiency and robustness of the proposed method for the identification and estimation of damages in tall shear frames were studied by using two numerical examples. In addition, the capability of the presented method in real conditions was demonstrated by contaminating of modal data with different levels of random noises. All the obtained results from the numerical studies are shown the good performance of the presented method in the damage localization and quantification of tall buildings.
J. Jin, L.j. Li, J.n. He,
Volume 4, Issue 1 (3-2014)
Abstract

A quick group search optimizer (QGSO) is an intelligent optimization algorithm which has been applied in structural optimal design, including the hinged spatial structural system. The accuracy and convergence rate of QGSO are feasible to deal with a spatial structural system. In this paper, the QGSO algorithm optimization is adopted in seismic research of steel frames with semi-rigid connections which more accurately reflect the practical situation. The QGSO is combined with the constraint from the penalty coefficients and dynamic time-history analysis. The performance of the QGSO on seismic design has been tested on a two-bay five-layer steel frame in this paper. The result shows that, compared with the PSO algorithm, the QGSO algorithm has better performance in terms of convergence rate and the ability to escape from local optimums. Moreover, it is feasible and effective to apply the QGSO to the seismic optimal design of steel framework.
R. Sheikholeslami, A. Kaveh, A. Tahershamsi , S. Talatahari,
Volume 4, Issue 1 (3-2014)
Abstract

A charged system search algorithm (CSS) is applied to the optimal cost design of water distribution networks. This algorithm is inspired by the Coulomb and Gauss’s laws of electrostatics in physics. The CSS utilizes a number of charged particles which influence each other based on their fitness values and their separation distances considering the governing law of Coulomb. The well-known benchmark instances, Hanoi network, double Hanoi network, and New York City tunnel problem, are utilized as the case studies to evaluate the optimization performance of CSS. Comparison of the results of the CSS with some other meta-heuristic algorithms indicates the performance of the new algorithm.
F. Zahedi Tajrishi, A. R. Mirza Goltabar Roshan,
Volume 4, Issue 1 (3-2014)
Abstract

This paper is concerned with the determination of optimal sensor locations for structural modal identification in a strap-braced cold formed steel frame based on an improved genetic algorithm (IGA). Six different optimal sensor placement performance indices have been taken as the fitness functions two based on modal assurance criterion (MAC), two based on maximization of the determinant of a Fisher information matrix (FIM), one aim on the maximization of the modal energy and the last is a combination of two aforementioned indices. The decimal two-dimension array coding method instead of binary coding method is applied to code the solution. Forced mutation operator is applied whenever the identical genes produce via the crossover procedure. An improvement is also introduced to mutation operator of the IGA. A verified computational simulation of a strap-braced cold formed steel frame model has been implemented to demonstrate the effectiveness and application of the proposed method. The obtained optimal sensor placements using IGA are compared with those gained by the conventional methods based on several criteria such as norms of FIM and minimum in off-diagonal terms of MAC. The results showed that the proposed IGA can provide sensor locations as well as the conventional methods. More important, based on the criteria, four of the six fitness functions, can identify the vibration characteristics of the frame model accurately. It is shown through the example that in comparison with the MAC-based performance indices, the use of the FIM-based fitness functions results in more acceptable and reasonable configurations.
M. Mohebbi, S. Moradpour , Y. Ghanbarpour,
Volume 4, Issue 1 (3-2014)
Abstract

In this research, optimal design and assessment of multiple tuned mass dampers (MTMDs) capability in mitigating the damage of nonlinear steel structures subjected to earthquake excitation has been studied. Optimal parameters of TMDs on nonlinear multi-degree-of-freedom (MDOF) structures have been determined based on minimizing the maximum relative displacement (drift) of structure where for solving the optimization problem the genetic algorithm (GA) has been used successfully. For numerical analysis, three and nine storey 2-D moment resisting nonlinear steel frames subjected to far-field and near-field earthquakes and optimal MTMDs has been designed for different values of mass ratio and TMDs number. According to the results of numerical simulations, it can be said that MTMDs mechanism could reduce the damage of nonlinear steel structures where the effectiveness increases by increasing TMDs mass ratio. Also the performance of MTMDs depends on earthquake characteristics, mass ratio and TMDs configuration where in this research the effective case has been locating TMDs on top floor in parallel configuration.
M. Taheri, A. Mahdavi,
Volume 4, Issue 2 (6-2014)
Abstract

Building performance simulation is being increasingly deployed beyond the building design phase to support efficient building operation. Specifically, the predictive feature of the simulation-assisted building systems control strategy provides distinct advantages in view of building systems with high latency and inertia. Such advantages can be exploited only if model predictions can be relied upon. Hence, it is important to calibrate simulation models based on monitored data. In the present paper, we report on the use of optimization-aided model calibration in the context of an existing university building. Thereby, our main objective is to deploy data obtained via the monitoring system to both populate the initial simulation model and to maintain its fidelity through an ongoing optimization-based calibration process. The results suggest that the calibration can significantly improve the predictive performance of the thermal simulation model.
R. Kamyab , E. Salajegheh,
Volume 4, Issue 2 (6-2014)
Abstract

This paper presents an efficient meta-heuristic algorithm for optimization of double-layer scallop domes subjected to earthquake loading. The optimization is performed by a combination of harmony search (HS) and firefly algorithm (FA). This new algorithm is called harmony search firefly algorithm (HSFA). The optimization task is achieved by taking into account geometrical and material nonlinearities. Operation of HSFA includes three phases. In the first phase, a preliminary optimization is accomplished using HS. In the second phase, an optimal initial population is produced using the first phase results. In the last phase, FA is employed to find optimum design using the produced optimal initial population. The optimum design obtained by HSFA is compared with those of HS and FA. It is demonstrated that the HSFA converges to better solution compared to the other algorithms.
M. Mohebbi , A. Bagherkhani,
Volume 4, Issue 3 (9-2014)
Abstract

In the area of semi-active control of civil structures, Magneto-Rheological (MR) damper has been an efficient mechanism for reducing the seismic response of structures. In this paper, an effective method based on defining an optimization problem for designing MR dampers has been proposed. In the proposed method, the parameters of semi-active control system are determined so that the maximum response of structure is minimized. To solve the optimization problem, the Genetic algorithm (GA) has been utilized. The modified Bouc-Wen model has been used to represent the dynamic behavior of MR damper while to determine the input voltage at any time step, the clipped optimal control algorithm with LQR controller has been applied. To evaluate the performance of the proposed method, a ten-storey shear frame subjected to the El-Centro excitation and for two different kinds of objective functions, optimal MR dampers have been designed. Then the performance of optimal MR damper has been tested under different excitations. The results of the numerical simulations have shown the effectiveness of the proposed method in designing optimal MR dampers that have the capability of reducing the response of the structures up to a significant level. In addition, the effect of selecting a proper objective function to achieve the best performance of MR dampers in decreasing different responses of structure has been shown.
S. Gholizadeh , H. Asadi , A. Baghchevan,
Volume 4, Issue 3 (9-2014)
Abstract

The main aim of the present paper is to propose efficient multi-objective optimization algorithms (MOOAs) to tackle truss structure optimization problems. The proposed meta-heuristic algorithms are based on the firefly algorithm (FA) and bat algorithm (BA), which have been recently developed for single-objective optimization. In order to produce a well distributed Pareto front, some improvements are implemented on the basic algorithms. The proposed MOOAs are examined for three truss optimization problems, and the results are compared to those of some other well-known methods. The numerical results demonstrate that the proposed MOOAs possess better computational performance compared to the other algorithms.
H. Fathnejat, P. Torkzadeh, E. Salajegheh, R. Ghiasi,
Volume 4, Issue 4 (11-2014)
Abstract

Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the MSEBI of structural elements is evaluated using properly trained cascade feed-forward neural network (CFNN). In order to achieve an appropriate artificial neural network (ANN) model for MSEBI evaluation, a set of feed-forward artificial neural networks which are more suitable for non-linear approximation, are trained. All of these neural networks are tested and the results demonstrate that the CFNN model with log-sigmoid hidden layer transfer function is the most suitable ANN model among these selected ANNs. Moreover, to increase damage severity detection accuracy, the optimization process of damage severity detection is carried out by particle swarm optimization (PSO) whose cost function is constructed based on MSEBI. To validate the proposed solution method, two structural examples with different number of members are presented. The results indicate that after determining the damage location, the proposed solution method for damage severity detection leads to significant reduction of computational time compared to finite element method. Furthermore, engaging PSO algorithm by efficient approximation mechanism of finite element (FE) model, maintains the acceptable accuracy of damage severity detection.
B. Mohebi, Gh. Ghodrati Amiri, M. Taheri,
Volume 4, Issue 4 (11-2014)
Abstract

This paper presents a suitable and quick way to choose earthquake records in non-linear dynamic analysis using optimization methods. In addition, these earthquake records are scaled. Therefore, structural responses of three different soil-frame models were examined, the change in maximum displacement of roof was analyzed and the damage index of whole structures was measured. The soil classification of project location was divided into 4 different types according to the velocity of shear waves in the Iranian Code for Seismic Design. As a result, 8 frame models were considered. The selection and scaling were carried out in 2 stages. In the first stage, the matching with design spectrum was carried out using genetic algorithm in order to achieve the mean of structural response. In the second stage, the matching with average of structural responses were carried out using PSO to achieve 1 or 3 accelerograms with related factors in order to be used in structural analysis.
Z. Hajishafee , S.h. Mirmohammadi , S.r. Hejazi,
Volume 5, Issue 1 (1-2015)
Abstract

The overall cost of companies dealing with the distribution tasks is considerably affected by the way that distributing vehicles are procured. In this paper, a more practical version of capacitated vehicle routing problem (CVRP) in which the decision of purchase or hire of vehicles is simultaneously considered is investigated. In CVRP model capacitated vehicles start from a single depot simultaneously and deliver the demanded items of several costumers with known demands where each costumer must be met once. Since the optimal vehicle procurement cost is a function of total distance it traverses during the planning horizon, the model is modified in a way that the decision of purchasing or hiring of each vehicle is made simultaneously. The problem is formulated as a mixed integer programming (MIP) model in which the sum of net present value (NPV) of procurement and traveling costs is minimized. To solve the problem, a hybrid electromagnetism and parallel simulated annealing (PSA-EM) algorithm and a Shuffled Frog Leaping Algorithm (SFLA) are presented. Finally, the presented methods are compared experimentally. Although in some cases the SFLA algorithm yields better solutions, experimental results show the competitiveness of PSA-EM algorithm from the computational time and performance points of view.
J. C. Liang, L. J. Li, N. He,
Volume 5, Issue 1 (1-2015)
Abstract

A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-objective theory is proposed to solve multi-objective optimality problems. The optimality objectives are the roof displacement and structure weight. Two types of structure are analysed in this paper, a truss structure and a framework structure. Performance-based seismic analysis, such as classical and modal pushover analysis, is carried out for the structures. Four optimality algorithms, namely, NSGA-II, MOPSO, MGSO, and MOHPSO, were used for structural optimisation to compare the effectiveness of the algorithms. The calculation results indicate that MOHPSO outperformed the other algorithms in terms of solution stability, universality, and consistency of the distribution of the Pareto front and the ability to consider constraints. The population can converge to the true Pareto front in the latter generations, which indicates that MOHPSO is effective for engineering multi-objective optimality problems.
Ch Gheyratmand, S. Gholizadeh , B. Vababzadeh,
Volume 5, Issue 2 (3-2015)
Abstract

A new meta-heuristic algorithm is proposed for optimal design of reinforced concrete (RC) frame structures subject to combinations of gravity and lateral static loads based on ACI 318-08 design code. In the present work, artificial bee colony algorithm (ABCA) is focused and an improved ABCA (IABCA) is proposed to achieve the optimization task. The total cost of the RC frames is minimized during the optimization process subject to constraints on demand capacity ratios (DCRs) of structural members. Three benchmark design examples are tested using ABCA and IABCA and the results are compared with those of presented in the literature. The numerical results indicate that the proposed IABCA is an efficient computational tool for discrete optimization of RC frames.
R. Sheikholeslami , A. Kaveh,
Volume 5, Issue 3 (8-2015)
Abstract

The main functional purpose of a water distribution network is to transport water from a source to several domestic and industrial units while at the same time satisfying various requirements on hydraulic response. All the water distribution networks perform two basic operations: firstly the water network needs to deliver adequate amounts of water to meet specific requirements, and secondly the water network needs to be reliable therefore, the required amount of water needs to be continuously available 24 hours a day and 365 days per year. Due to the inevitable failures of some components such as pump stations, reservoirs and/or pipelines in a large-scale water distribution network, in designing a reliable network, the topological structure with low vulnerability must be achieved. Consequently, the study of connectivity, which is the key graph-theoretical notion, becomes crucial. This paper highlights some fundamental concepts from graph theory for vulnerability assessment of water distribution networks, addresses the mathematical properties of the link and node-deletion problems, and outlines some well-established results on the deterministic measures to assess the fault tolerance of networks.
M. Mashayekhi, E. Salajegheh , M. Dehghani,
Volume 5, Issue 3 (8-2015)
Abstract

In this paper, for topology optimization of double layer grids, an efficient optimization method is presented by combination of Imperialist Competitive Algorithm (ICA) and Gravitational Search Algorithm (GSA) which is called ICA-GSA method. The present hybrid method is based on ICA but the moving of countries toward their relevant imperialist is done using the law of gravity of GSA. In topology optimization process, the weight of the structure is minimized subjected to displacements of joints, internal stress and slenderness ratio of members constraints. Through numerical example, topology optimization of a typical large-scale double layer grid is obtained by ICA, GSA and ICA-GSA methods. The numerical results indicate that the proposed algorithm, ICA-GSA, executes better than ICA, GSA and the other methods presented in the literatures for topology optimization of largescale skeletal structures.

Page 2 from 5     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb