Search published articles


Showing 80 results for Structure

H. Safari , A. Gholizad,
Volume 8, Issue 2 (8-2018)
Abstract

Damage assessment is one of the crucial topics in the operation of structures. Multiplicities of structural elements and joints are the main challenges about damage assessment of space structure. Vibration-based damage evaluation seems to be effective and useful for application in industrial conditions and the low-cost. A method is presented to detect and assess structural damages from changes in mode shapes. First, the mechanism of using two-dimensional continuous wavelet transform is applied for damage localization. Second, finite element model updating technique is utilized as an inverse optimization problem by applying the charged system search algorithm to assess the damage in each element sited in the first stage. The study indicates the potentiality of the developed code to assess the damages of space structures without concerning about the size and shape of structure. A series of numerical examples with different damage scenarios have been carried out in the double layer space structures and the results confirm the reliability and applicability of introduced method.
A. Kaveh, S. R. Hoseini Vaez, P. Hosseini,
Volume 8, Issue 3 (10-2018)
Abstract

Vibrating particles system (VPS) is a new meta-heuristic algorithm based on the free vibration of freedom system’ single degree with viscous damping. In this algorithm, each agent gradually approach to its equilibrium position; new agents are generated according to current agents and a historically best position. Enhanced vibrating particles system (EVPS) employs a new alternative procedure to enhance the performance of the VPS algorithm. Two different truss structures are investigated to demonstrate the performance of the VPS and EVPS weight optimization of structures.
V. R. Kalatjari, M. H. Talebpour,
Volume 8, Issue 3 (10-2018)
Abstract

In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined in a new list. Optimization process is started based on the new list of sections which includes subset’s representatives (global search). After some specific generations, range of optimum design is indicated for each designing variable. Afterwards, the list of sections is redefined relative to previous step’s result and based on subset of relevant variable. Finally, optimization will be continued based on the new list of sections for each designing variable to complete the generations (local search). In this regard, effect of dimension and number of subset’s members of global and local searches in proposal are investigated by optimization examples of skeletal structures. Results imply on optimization speed enhancement based on proposal in different cases proportional to simple and advanced cases of GA.
K. Biabani Hamedani , V. R. Kalatjari,
Volume 8, Issue 4 (10-2018)
Abstract

Structural reliability theory allows structural engineers to take the random nature of structural parameters into account in the analysis and design of structures. The aim of this research is to develop a logical framework for system reliability analysis of truss structures and simultaneous size and geometry optimization of truss structures subjected to structural system reliability constraint. The framework is in the form of a computer program called RBO-S>S. The objective of the optimization is to minimize the total weight of the truss structures against the aforementioned constraint. System reliability analysis of truss structures is performed through branch-and-bound method. Also, optimization is carried out by genetic algorithm. The research results show that system reliability analysis of truss structures can be performed with sufficient accurately using the RBO-S>S program. In addition, it can be used for optimal design of truss structures. Solutions are suggested to reduce the time required for reliability analysis of truss structures and to increase the precision of their reliability analysis.
A. Kaveh, S. Sabeti,
Volume 9, Issue 1 (1-2019)
Abstract

Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization (ECBO) is utilized to investigate the optimal design of jacket supporting structures for offshore wind turbines when a number of structural constraints, including a frequency constraint, are considered. The algorithm is validated using a design example. The OC4 reference jacket, which has been widely referenced in offshore wind industry, is the considered design example in this paper. The whole steps of this research, including loading, analysis, design, and optimization of the structure, are coded in MATLAB. Both Ultimate Limit States (ULS) and frequency constraints are considered as design constraints in this paper. Huge weight reduction is observed during this optimization problem, indicating the efficiency of the ECBO algorithm and its application in the optimization of offshore wind turbine structures.
S. Gholizadeh, R. Sojoudizadeh,
Volume 9, Issue 2 (4-2019)
Abstract

This paper proposes a modified sine cosine algorithm (MSCA) for discrete sizing optimization of truss structures. The original sine cosine algorithm (SCA) is a population-based metaheuristic that fluctuates the search agents about the best solution based on sine and cosine functions. The efficiency of the original SCA in solving standard optimization problems of well-known mathematical functions has been demonstrated in literature. However, its performance in tackling the discrete optimization problems of truss structures is not competitive compared with the existing metaheuristic algorithms. In the framework of the proposed MSCA, a number of worst solutions of the current population is replaced by some variants of the global best solution found so far. Moreover, an efficient mutation operator is added to the algorithm that reduces the probability of getting stuck in local optima. The efficiency of the proposed MSCA is illustrated through multiple benchmark optimization problems of truss structures.
R. Kamgar, M. Khatibinia, M. Khatibinia,
Volume 9, Issue 2 (4-2019)
Abstract

Many researches have focused on the optimal design of tuned mass damper (TMD) system without the effect of soil–structure interaction (SSI), so that ignoring the effect of SSI may lead to an undesirable and unrealistic design of TMD. Furthermore, many optimization criteria have been proposed for the optinal design of the TMD system. Hence, the main aim of this study is to compare different optimization criteria for the optimal design of the TMD system considering the effects of SSI in a high–rise building. To acheive this purpose, the optimal TMD for a 40–storey shear building is firstly evaluated by expressing the objective functions in terms of the reduction of structural responses (including the displacement and acceleration) and the limitation of the scaled stroke of TMD. Then, the best optimization criterion is selected, which leads to the best performance for the vibration control of the structure. In this study, the whale optimization algorithm (WOA) is employed to optimize the parameters of the TMD system. The numerical results show that the soil type and selected objective function efficiently affect the optimal design of the TMD system.
M. Shahrouzi, A. Barzigar, D. Rezazadeh,
Volume 9, Issue 3 (6-2019)
Abstract

Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimization as a powerful meta-heuristic with several engineering applications. Special combination of static and dynamic opposition-based operators are hybridized with CBO so that its performance is enhanced. The proposed OCBO is validated in a variety of benchmark test functions in addition to structural optimization and optimal clustering. According to the results, the proposed method of opposition-based learning has been quite effective in performance enhancement of parameter-less colliding bodies optimization.
H. Fazli,
Volume 9, Issue 3 (6-2019)
Abstract

In this paper, an optimization framework is developed for performance-based seismic design of composite moment frames consisting of concrete filled steel box columns and I-shaped steel beams. Material cost of the structure and seismic damage under severe earthquake ground motions are minimized as objective functions. Two design examples are presented to demonstrate the applicability and efficiency of the proposed method. Based on the obtained results, it is concluded that the proposed design optimization approach is capable of producing seismic designs of composite MRFs which are cost effective, provide reliable seismic performance and suffer less damage in the case of a severe earthquake ground motion.
A. Kaveh, M.r. Seddighian, E. Ghanadpour,
Volume 9, Issue 3 (6-2019)
Abstract


Despite widespread application of grillage structures in many engineering fields such as civil, architecture, mechanics, their analysis and design make them more complex than other type of skeletal structures. This intricacy becomes more laborious when the corresponding
analysis and design are based on plastic concepts.
In this paper, Finite Element Method is utilized to find the lower and the upper bounds solutions of rectangular planner grids and this method is compared with analogues Finite Difference Method to indicate the efficiency of proposed approach.

 
H. Fazli,
Volume 9, Issue 4 (9-2019)
Abstract

Composite RCS building frames integrate reinforced concrete columns with structural steel beams to provide an efficient solution for the design and construction of earthquake-resisting structures. In this paper, an optimization framework is developed for performance-based seismic design of planar RCS moment resisting frames. The objective functions are defined as minimizing the construction cost and the seismic damage. The design variables are obtained in a two-stage design optimization procedure; the elastic design in which column cross-section dimensions are determined and the inelastic design in which beam cross-sections and column reinforcements are obtained. Two design examples are presented to demonstrate the applicability and efficiency of the proposed method. Based on the obtained results, it is concluded that the proposed design optimization procedure is a viable approach in producing cost effective seismic designs of composite RCS frames, with reliable seismic performance and reduced damage potential in the event of a severe earthquake ground motion.
S. Amini-Moghaddam, M. I. Khodakarami, B. Nikpoo,
Volume 10, Issue 1 (1-2020)
Abstract

This paper aims to obtain the optimal distance between the adjacent structures using Particle Swarm Optimization (PSO) algorithm considering structure-soil-structure systems; The optimization algorithm has been prepared in MATLAB software and connected into OpenSees software (where the structure-soil-structure system has been analyzed by the direct approach). To this end, a series of adjacent structures with various slenderness have been modeled on the three soil types according to Iranian seismic code (Standard No. 2800) using the direct method. Then they have been analyzed under six earthquake excitations with different risk levels (low, moderate, and high).
The results are compared with the proposed values of separation gap between adjacent structures in the Iranian seismic code (Standard No. 2800). Results show that since structures with the same height constructed on a stiff soil will move in the same phase, there is no need to put distance between them. Although, the structures with the height more than 6-story frames where are located on a soft soil are needed to be separated. Additionally, the results show more separation gap between two adjacent structures when the risk level of earthquake is high. In general, the values which are presented in Standard No. 2800 are not suitable for low /moderate-rise structures specially when they are subjected to a high-risk level earthquake and are located on a soft soil and this separation gap should be increased about 10 to 90 percentage depend on the conditions but these values are appropriate for the adjacent structures with same height where are subjected to a low-risk level earthquakes built on soft soil.
A. Kaveh, K. Biabani Hamedani, F. Barzinpour,
Volume 10, Issue 2 (4-2020)
Abstract

Meta-heuristic algorithms are applied in optimization problems in a variety of fields, including engineering, economics, and computer science. In this paper, seven population-based meta-heuristic algorithms are employed for size and geometry optimization of truss structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical Parthenogenesis Algorithm, Cuckoo Search algorithm, Teaching-Learning-Based Optimization algorithm, Vibrating Particles System algorithm, Water Evaporation Optimization, and a hybridized ABC-TLBO algorithm. The Taguchi method is employed to tune the parameters of the meta-heuristics. Optimization aims to minimize the weight of truss structures while satisfying some constraints on their natural frequencies. The capability and robustness of the algorithms is investigated through four well-known benchmark truss structure examples.
S. Bakhshinezhad, M. Mohebbi,
Volume 10, Issue 3 (6-2020)
Abstract

In this paper, a procedure has been introduced to the multi-objective optimal design of semi-active tuned mass dampers (SATMDs) with variable stiffness for nonlinear structures considering soil-structure interaction under multiple earthquakes. Three bi-objective optimization problems have been defined by considering the mean of maximum inter-story drift as safety criterion of structural components, absolute acceleration as the criterion of occupants’ convenience, and safety of non-structural acceleration sensitive components, as well as SATMD relative displacement as the cost criterion of the control device. The parameters of the weighting matrices of the instantaneous optimal control algorithm and the maximum and minimum level of variable stiffness of the semi-active device have been considered as design variables. An improved version of the non-dominated sorting genetic algorithm (NSGA-II), has been employed to solve the optimization problems and figure out the set of Pareto optimal solutions. SATMDs with different mass ratios have been designed for an eight-story shear type building with bilinear elasto-plastic stiffness model where the soil-structure interaction has been incorporated by Cone model with three degrees of freedom for the soil. Results show the capability and simplicity of the proposed procedure to design SATMDs considering multiple performance criteria. It is observed that this procedure can offer a wide range of optimal solutions throughout the Pareto front which can be chosen by the designer based on desired performance and application of the structure.
M. Danesh, M. Jalilkhani,
Volume 10, Issue 3 (6-2020)
Abstract

This study is devoted to discrete sizing optimization of truss structures employing an efficient discrete evolutionary meta-heuristic algorithm which uses the Newton gradient-based method as its updating scheme and it is named here as Newton Meta-heuristic Algorithm (NMA). In order to enable the NMA population-based meta-heuristic to effectively explore the discrete design space, a term containing the best solution found is added to the basic updating rule of the algorithm. The efficiency of the proposed NMA metaheuristic is illustrated by presenting five benchmark discrete truss optimization problems and comparing the results with literature. The numerical results demonstrate that the NMA is a robust and powerful meta-heuristic algorithm for dealing with the discrete sizing optimization problems of steel trusses.
P. Hosseini, H. R. Hoseini Vaez, M. A. Fathali, H. Mehanpour,
Volume 10, Issue 3 (6-2020)
Abstract

Due to the random nature of the variables affecting the analysis and design of structures, the reliability method is considered as one of the most important and widely used topics in structural engineering. Despite the simplicity of moment methods, the answer to problems with multiple design points (the point with the highest probability of failure) such as transmission line towers depends a lot on the starting point of the search; and it may converge to the local optima answer which is not desirable. Simulation methods also require a large number of evaluations of the limit state function and increase the volume and time of calculations. Also, the design point is not calculated in most of these methods. In this study, the reliability index of four transmission line towers was calculated with four metaheuristic algorithms in which the limit state function was defined based on the displacement of nodes and the results were compared with the results of Monte Carlo Simulation (MCS) method. For this purpose, the objective function was defined as the geometric distance between the point on the function of the boundary condition to the origin in the standard normal coordinate system and the constraint of the problem (the limit state function) based on the displacement of the nodes. Random variables in these problems consisting of the cross-sectional area of the members, the modulus of elasticity, and the nodal loads.
B. Kamali Janfada , M. R. Ghasemi,
Volume 10, Issue 4 (10-2020)
Abstract

This paper proposes a GA-based reduced search space technique (GA-RSS) for the optimal design of steel moment frames. It tries to reduce the computation time by focusing the search around the boundaries of the constraints, using a ranking-based constraint handling to enhance the efficiency of the algorithm. This attempt to reduce the search space is due to the fact that in most optimization problems the optimal solution lies on or near the boundaries of the feasible region. All the analyses/optimization steps have been implemented in MATLAB and the method has been validated by optimizing three moment-frame benchmark problems. According to the results, the algorithm performs fit and needs relatively fewer analyses than other metaheuristic algorithms to reach a global optimum solution.
A. Kaveh, K. Biabani Hamedani,
Volume 10, Issue 4 (10-2020)
Abstract

In this paper, set theoretical variants of the artificial bee colony (ABC) and water evaporation optmization (WEO) algorithms are proposed. The set theoretical variants are designed based on a set theoretical framework in which the population of candidate solutions is divided into some number of smaller well-arranged sub-populations. The framework aims to improve the compromise between diversification and intensification of the search and makes it possible to design various variants of a P-metaheuristic. In order to verify the stability and robustness of the set theoretical framework, the proposed algorithms are applied to solve three different benchmark structural design optimization problems. The results show that the set theoretical framework improves the performance of the ABC and WEO algorithms, especially in terms of robustness and convergence characteristics.
S. R. Hoseini Vaez, P. Hosseini, M. A. Fathali, A. Asaad Samani, A. Kaveh,
Volume 10, Issue 4 (10-2020)
Abstract

Nowadays, the optimal design of structures based on reliability has been converted to an active topic in structural engineering. The Reliability-Based Design Optimization (RBDO) methods provide the structural design with lower cost and more safety, simultaneously. In this study, the optimal design based on reliability of dome truss structures with probability constraint of the frequency limitation is discussed. To solve the RBDO problem, nested double-loop method is considered; one of the loops performs the optimization process and the other one assesses the reliability of the structure. The optimization process is implemented using ECBO and EVPS algorithms and the reliability index is calculated using the Monte Carlo simulation method. Finally, the size and shape reliability-based optimization of 52-bar and 120-bar dome trusses has been investigated.
F. Rahimi,
Volume 10, Issue 4 (10-2020)
Abstract

By incorporating structural engineering, animal husbandry, and veterinary, this interdisciplinary research accomplishes the following two main objectives: 1) design and optimization to reduce the weight of the steel structure skeleton of the stable with ECBO & CBO algorithms; 2) improving the performance of the natural ventilation system in the stable with some changes in the structure's geometric design.
In this study, each algorithm's performance will be investigated in the course of accomplishing the aforementioned objective. Furthermore, using stress ratios by algorithms in each member will be studied. Finally, using the algorithms, a stable steel structure with lower weight is designed.
In this paper, through changing and improving the structure's geometric design, a structure more compatible with the natural ventilation system's requirements is designed. These changes are as follows: 1) design of a taller stable structure; 2) larger design of the air inlets in the joint line between the upper part of the side walls and the lower part of the pitched roof.

Page 3 from 4     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb