Search published articles


Showing 5 results for Zakian

A. Kaveh, P. Zakian,
Volume 2, Issue 3 (7-2012)
Abstract

In this article optimal design of shear walls is performed under seismic loading. For practical aims, a database of special shear walls is created. Special shear walls are used for seismic design optimization employing the charged system search algorithm as an optimizer. Constraints consist of design and performance limitations. Nonlinear behavior of the shear wall is taken into account and performance based seismic design optimization is accomplished. Capacity curves of the optimal solution are determined and compared incorporates soil–structure interaction. Also an optimization based method is proposed for bilinear approximation of capacity curve. These are a new methodology for seismic RC shear wall optimum design.
A. Kaveh, P. Zakian,
Volume 5, Issue 4 (7-2015)
Abstract

This study presents shape optimization of a gravity dam imposing stability and principal stress constraints. A gravity dam is a large scale hydraulic structure consisting of huge amount of concrete material. Hence, an optimum design gives a cost-benefit structure due to the fact that small changes in shape of dam cross-section leads to large saving of concrete volume. Three recently developed meta-heuristics are utilized for optimizing the structure. These algorithms are charged system search (CSS), colliding bodies optimization (CBO) and its enhanced edition (ECBO). This article also provides useful formulations for stability analysis of gravity dams which can be extended to further researches.
P. Zakian,
Volume 11, Issue 4 (11-2021)
Abstract

Natural frequencies of a structure give useful information about the structural response to dynamic loading. These frequencies should be far enough from the critical frequency range of dynamic excitations like earthquakes in order to prevent the resonance phenomenon sufficiently. Although there are many investigations on optimization of truss structures subjected to frequency constraints, just a few studies have been considered for optimal design of frame structures under these constraints. In this paper, a recently proposed metaheuristic algorithm called Adaptive Charged System Search (ACSS) is applied to optimal design of steel frame structures considering the frequency constraints. Benchmark design examples are solved with the ACSS, and optimization results are illustrated in terms of some statistical indices, convergence history and solution quality. The design examples include three planar steel frames with small to large number of design variables. Results show that the ACSS outperforms the charged system search algorithm in this sizing optimization problem.
P. Zakian,
Volume 13, Issue 3 (7-2023)
Abstract

In this article, topology optimization of two-dimensional (2D) building frames subjected to seismic loading is performed using the polygonal finite element method. Artificial ground motion accelerograms compatible with the design response spectrum of ASCE 7-16 are generated for the response history dynamic analysis needed in the optimization. The mean compliance of structure is minimized as a typical objective function under the material volume fraction constraint. Also, the adjoint method is employed for the sensitivity analysis evaluated in terms of spatial and time discretization. The ground structures are 2D continua taking the main structural components (columns and beams) as passive regions (solid) to render planar frames with additional components. Hence, building frames with different aspect ratios are considered to assess the usefulness of the additional structural components when applying the earthquake ground motions. Furthermore, final results are obtained for different ground motions to investigate the effects of ground motion variability on the optimized topologies.
 
Pooya Zakian, Pegah Zakian,
Volume 14, Issue 2 (2-2024)
Abstract

In this study, the support vector machine and Monte Carlo simulation are applied to predict natural frequencies of truss structures with uncertainties. Material and geometrical properties (e.g., elasticity modulus and cross-section area) of the structure are assumed to be random variables. Thus, the effects of multiple random variables on natural frequencies are investigated. Monte Carlo simulation is used for probabilistic eigenvalue analysis of the structure. In order to reduce the computational cost of Monte Carlo simulation, a support vector machine model is trained to predict the required natural frequencies of the structure computed in the simulations. The provided examples demonstrate the computational efficiency and accuracy of the proposed method compared to the direct Monte Carlo simulation in the computation of the natural frequencies for trusses with random parameters.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb