Search published articles


Showing 2 results for Taghian

I. Ahmadianfar, A. Adib , M. Taghian,
Volume 5, Issue 2 (3-2015)
Abstract

This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizing each sub-problem. This simple procedure makes MOEA/D have lower computational complexity compared with non-dominated sorting genetic algorithm II (NSGA-II). The algorithm (MOEA/D) is compared with the Genetic Algorithm (NSGA-II) using a set of common test problems and the real-world Zohre reservoir system in southern Iran. The objectives of the case study include water supply of minimum flow and agriculture demands over a long-term simulation period. Experimental results have demonstrated that MOEA/D can improve system performance to reduce the effect of drought compared with NSGA-II superiority. Therefore, MOEA/D is highly competitive and recommended to solve multi-objective optimization problems for water resources planning and management.
I. Ahmadianfar, A. Adib , M. Taghian,
Volume 6, Issue 1 (1-2016)
Abstract

To deal with severe drought when water supply is insufficient hedging rule, based on hedging rule curve, is proposed. In general, in discrete hedging rules, the rationing factors have changed from a zone to another zone at once. Accordingly, this paper is an attempt to improve the conventional hedging rule to control the changes of rationing factors. In this regard, the simulation model has employed a fuzzy approach, and this causes rationing factor changing during a long term simulation gradually. To optimize different parameters of the purposed hedging a Multi-objective Particle Swarm Optimization (MOPSO) algorithm has been considered. The minimum of two objectives Modified Shortage Index (MSI) involving water supply of minimum flow and agriculture demands can be taken as the optimization objectives. The results of the proposed hedging rule indicate long term and annual MSI values have considerably improved compared to the conventional hedging rule. This determines that the proposed method is promising and efficient to mitigate the water shortage problem.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb