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ABSTRACT

In this paper, a neural network is trained for optimal nodal ordering of graphs to obtain a small
wavefront using soft computing. A preference function consists of six inputs that can be seen as a
generalization of Sloan's function. These six inputs represent the different connection characteristics
of graph models. This research is done with the aim of comparing Sloan's theoretical numbering
method with Sloan’'s developed method with neural networks and WSA meta-heuristic algorithm.
Unlike the Sloan algorithm, which uses two fixed coefficients, six coefficients are used here, based
on the evaluation of artificial neural networks. The weight of networks is obtained using Water
Strider algorithm. Examples are included to demonstrate the performance of the present hybrid
method.
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1. INTRODUCTION

Optimal analysis is defined as the analysis where the structural matrices (stiffness or flexibility)
are sparse, well structured and well conditioned [1,2]. In order to have well structured matrices
the nodes/elements should be ordered depending on the method to be used for the solution of the
involved equations. For Gaussian elimination banded form is the most traditional form [3,4,5].
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For skyline solution the profile should be reduced [6,7,8] and for frontal solution frontwidth
must be reduced [9,10,11,12,13].

Frontal method is particularly popular due to its capability to eliminate variables during the
matrix assembly process [14]. In contrast, band and profile methods usually first explicitly
construct the coefficient matrix and then perform the solution operations based on it.

These approaches, along with other solution techniques, can help reduce computational time
and improve efficiency in finite element analyses [15]. In finite element analysis, in the case of
one degree of freedom per node, performing a nodal ordering is equivalent to reordering the
equations. In a more general problem with m degrees of freedom at each node, m coupled
equations are generated for each node. In this case, reordering is usually performed on the node
numbering of the graph model to reduce the bandwidth, profile, or wavefront, since the size of
the problem is m-fold smaller than that.

Various algorithms have been developed for numbering degrees of freedom and for
wavefront reduction in matrix systems. These algorithms aim to minimize the size of the
wavefront and optimize the process of solving equations [16-19].

This research has been performed with the aim of comparing Sloan's theoretical numbering
method with Sloan's developed method with neural networks and meta-heuristic WSA
algorithm. A total of 425 data sets were collected from the results of numbering different
diagrams with Sloan's algorithm. Node, ds, de, deg, nact and npre are the input parameters and
the order of the nodes of the graph is estimated as the output variable. Unlike the Sloan
algorithm which uses two constant coefficients, here, based on the evaluation of the artificial
neural network, six coefficients are used. The weight of networks is obtained using Water
Strider algorithm. Examples are included to demonstrate the performance of the present hybrid
method.

2. DEFINITIONS

A graph consists of nodes and members, the members are connected to each other with nodes,
and there are members on both sides of the node. Two nodes of a graph are called adjacent if
these nodes are end nodes of a member. A member is called incident with a node if the node is
an end node of the member. The degree of a node is the number of members that interact with
that node.

A tree is a subset of a graph in which there are no cycles. A cycle means a closed path in a
graph. A spanning tree refers to a tree that contains all the nodes of a graph. The shortest root
tree (SRT) is a tree whose distance from each node to the root is the shortest possible [20].

A contour of a [SRT] consists of all nodes with equal distance k from the root. The
number of lines "d" of an SRT is known as its depth and the maximum number of nodes in a
contour "w" defines the width of the SRT. Consider the solution of diffuse linear equations:

Dx =z @
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where the n X n matrix D is a sum of elemental matrices

m
D= Z plt @)
=1

and the right-hand side vector z is of the form,

m

zZ= 2 zl 3)

=1

In Equation (2) each matrix D! has entries only in the principle submatrix corresponding to
the variables in element | and represents contributions from this element. This principle
submatrix is assumed to be dense. The matrix D may be non-symmetric but form (2) implies
that it has a symmetric pattern. With reference to Equation (1), column j is said to be active at
stage i, if j = i and there is a non-zero entry in column j with a row index, k, such thatk < i.
Letting f; denote the number of columns that are active at stage i, the maximum frontwidth of D
is given by

Fpax =max{f;}, 1<i<n 4

The root-mean-squared-error (RMSE) wavefront is defined to be
n
1 2N1/2
Frmse = (szl ) (5)
i=1

Assuming that n and the average value of f; are reasonably large,it can be shown that a
complete profile or front factorization approximately O(nE2,;.) operations.

3. SLOAN’S ALGORITHM FOR ELEMENT ORDERING

Sloan's algorithm consists of two steps, the first is the selection of pseudo-peripheral nodes and
the second is numbering. The two steps are described below.
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3.1 Selection of pseudo-peripheral nodes

A pair of starting nodes is determined by the following method. This approach has been
used by Duff et al. [21] which in turn is a modified version of George and Liu's previous
algorithm [22].

Algorithm:
Step 1: Pick a node with minimum degree and call it v.

Step 2: Form an SRT whose root is v and decompose the subgraph containing the nodes into its
subcontours.

Step 3: Select one node of minimum degree from each subcontours. Generate an SRT from each
of such nodes, and choose the one corresponding to the smallest width.

Step 4: Repeat the process of Steps 2 and 3 as far as reduction in width of the SRT can be
observed.

the root ‘s’ and the selected end node ‘e’ are the pseudo-peripheral nodes required.

3.2 Node reordering

In the node reordering step of Sloan's algorithm, initially, nodes are arbitrarily labeled with
integers from 1 to N, where N is the number of nodes in the graph. New node labels are
generated in one step. Each node to which a new label is assigned is called a post-active state.
Any node that is adjacent to a post-active node, but does not have a post-active state, is defined
as an active state. Nodes that are adjacent to an active node, but do not have an active or post-
active state, have a pre-active state. Nodes that do not have post-active, active, or pre-active
status are inactive [8].The following steps are taken:

Step 1: According to the given description, group the nodes as shown in Figure 1.
Step 2: Label the active and pre-active nodes for the next step.

Step 3: Get the priority for all candidate nodes. The priority calculation for node i is as follows:

N(@) =-W; xr(i) — W, xd(e,i) (6)

where W, and W, are integer coefficients (set as W; = 1 and W, = 2 in the original
Sloan’s algorithm [14]); d(e, i) is the distance of node i to the end node e and
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r(i) =h; —b; +¢ (7)

where h; is the degree of node i, b; is the number of active and post-active nodes
adjacent to node i, and t; is zero if the node i is active and post-active, and unity
otherwise. Here, r(i) represents the increment of the frontwidth for labelling of the
node i.

Non-active

Pre-active

\
/ Active

Figure 1: Different statues of node in the proses of labelling

post-active

Step 4: Select the node with higher priority and label it.
Step 5: Repeat Steps 1-4 until all the nodes are labeled [17].

King's algorithm is similar in nature to Sloan's algorithm, with the difference that, firstly, it
does not need to select the start and end nodes, and secondly, in equation 6, W1 =1 and W2 = 0.
Figure 2 shows a sample graph with simple numbering and numbering with the Sloan method.
As explained in section 3.1, by forming the SRT, we obtain the values of de (i) and ds(i) and the
degree of the nodes, deg(i).

As an example, consider the graph shown in Figure 2(a). Sloan’s algorithm leads to the
numbering as shown in Figure 2(b). For this graph s = 1 and e = 20 are selected, and for a
typical node i = 9, the above defined values are as ds(9) = 3, de(9) = 4 and deg(9) = 4. Similar to
Sloan’s method.

The number of nodes adjacent to the node i in the status of active is shown by nact(i), and

the number of nodes adjacent to i in the status of pre-active is designated by npre(i).
For the graph of Figure 2(b), after labelling the nodes 1 and 2, these nodes will be in the state of
post-active. The nodes 3 and 4 have active; the nodes 5 and 9 are in the state of pre-active; the
rest of the nodes have non-active status. In this example, for the node 9, nact(9) = 2 and npre(9)
=2.
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Considering the above definitions, for each node i, the neural network has six input neurons.
Selecting the starting node as assigning the label 1 to this node, the numbering starts. At each
consequent step, after updating the status of the nodes, the input is given to the net and the
output N (i) as the priority of the node i is obtained for all the candidate nodes.
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Figure 2: A simple example

4. HYBRID NEURAL NETWORK-WATER STRIDER ALGORITHM

In this paper a neural network is trained for optimal nodal ordering of graphs. In this approach
ideas from neural networks and priority function are combined for evaluating suitable
coefficients for the vectors of the priority function. The WSA is used for evaluation of the
weights of the networks [23].

In Sloan’s method, the priority function is a linear function of two graph parameters as in
Equation (6), and the coefficients specifies the importance of each parameter. Following
experimentations, Sloan’s recommends the pair (W1 = 1 and W2 = 2) for the coefficients.
However, the results of other researcher [10] indicate that, for some problems there are
considerable advantages in using other values.

MLP consists of two types of elements: neurons (nodes) and weights (connections).
Neurons are organized in layers: the first layer is called the input layer, which receives data
from the external environment [24]. The last layer called the output layer that provides the
output or responses from the network. Between the input and output layers, there is at least one
hidden layer. The weights represent the strength of the connections, which determine the
distribution of the data flow among the layers. Between any two neighboring layers, neurons are
fully connected. For two layers with m and n neurons, there are m x n connections. Therefore,
the weight between two adjacent layers can be represented as an m x n matrix.
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In this article, according to the number of databases used for training, the network shown in
Figure 3 has two hidden layers, with 15 and 13 neurons. In this research, the Water Strider
algorithm was used instead of the backpropagation method to obtain the weights in the neural
network. 70% of data is used for training, 15% of data for testing and 15% of them for
validation. Tan-sigmoid activation function as it is shown in Eq. (8), is used:

(er—e™)

(8)

Tangent Sigmoid =

NG)

Figure 3: Topology of the neural network for the example
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5. CONSTRUCTION OF THE DATASET

For a collection of examples used for training, ordering the nodes can be performed using any
available technique. One can for example use the Sloan’s method. The graphs used for ordering,
can be a single one or a group of graphs with similar topological properties. The dataset used in
the study contained 425 data points obtained from different graphs with Sloan algorithm. Six
parameters were used as input parameters, including, node, ds, de, deg, nact, and npre. The node
number (N) is estimated as the output parameter. The input and target parameters’ initial
statistics are described in Table 1.

Table 1: The statistical description of the datasets

Parameters Explanation Symbols

X1 Number node of graph node
X2 Distance of start node ds
X3 Distance of end node de
X4 Degree of node deg
X5 The number of nodes adjacent to the node i in the status of active nact
X6 The number of nodes adjacent to i in the status of pre-active npre

Output Node number N

6. WATER STRIDER ALGORITHM

To describe the WSA algorithm, five main stages including birth, territory  establishment,
mating, feeding and death are modeled mathematically. Throughout the algorithm, the search
space is defined as a lake containing different solution regions, and food serves as a metaphor
for the objective function [22].

6.1. Initial birth
Initially, the water striders (WSs) are born with eggs distributed on the lake. A random

distribution is assumed as Eq. (9)

WS? = Ub + rand(Ub — Lb),i = 1,2, ...,nws (9)

where WS? determines the initial position of ith water strider. Ub and Lb denote the upper
and lower bounds corresponding to maximum and minimum allowable values, respectively;
rand is a random number between 0 and 1; nws is the number of WSs. The initialized WSs are
evaluated using an objective function to calculate the fitness of their position on the lake.
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6.2. Territory establishment

WSs maintain territories to live, mate, and feed. To establish nt number of territories, the
following technique is utilized for assigning the WSs to the territories. Firstly, WSs are sorted
based on their fitness and are divided into nws/ nt groups orderly. The j* member of each
group is assigned to j* territory, wherej = 1.2.,,,.nt. Hence nws/ nt number of WSs live
inside each territory. Since the females usually find the best place of each territory for feeding,
the positions in each territory with the best and worst fitness are considered as the female
(optimal foraging-habitat) and male (keystone) positions, respectively.

Mating zone Escaping zone

4 ~ P o
Male ' B p A} Female ‘ ¢ ‘
sod e o dy ¢ [
. xa.....; ....... ] ' ) [ q
) N " ! ] ' (I p
. ' U ¢ ' S :
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A, S ’ s ¢ s SO
P £ T g he +° A EP =]
Sl |V Smjme S g
R.rand R.(1+rand)
(a) The signal exchange (b)successful mating of WSs after (c)Unsuccessful mating of WSs
between male and female WSs attraction consisting of Mating and escaping
for mating levels
Figure 4: The mating behavior of water striders and position updating
6.3. Mating

Mating is a remarkable process in the life of water striders. As aforementioned, the keystone
sends courtship calling ripples and the female respond by sending attraction or repulsive ripple
signals. The probability of sending attraction response is considered equal to p, and therefore
(1 — p) probability is left for the repulsive response. Since the response of females is not
determined, for simplicity, we assumed p as 50%. If the female sends an attraction signal, they
will move toward each other and will mate. Considering a circle wave as illustrated in Fig. 4.a,
after mating, the new position will be updated to a location between them as Fig. 4.b. If the
female rejects the request, the male will mount her, then female dismount him and get him
away, as shown in Fig. 4.c. The keystone may mate or be repelled, either way, the new position
of keystone will be calculated by Eqg. (10)

WSH* =wSt + R.rand  if mating happens(with probability of p) (10)
WSH! = WSE+ R.(1 + rand) otherwise
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where WSE is the position of i" WS in the t** cycle; rand is a random number between 0
and 1; R is a vector whose initial point is at the position of male (WS/~1) and the endpoint is at
the position of a female in the same territory (WSE™1). This female can be selected by fitness
proportionate selection mechanisms such as roulette wheel selection [45]. The length of R is
equal to the Euclidean distance between male (WSf~1) and female WSs (WSE1) (the radius of
ripple wave) as Eq. (11) and Fig. 4.a.

R=Wsit —wstH? (11)

(a) foraging for food if the new position is not enough (b) moved toward the best strider
rich
Figure 5: The foraging process after that the water strider could not find enough food in the new
position after mating behavior

6.4. Feeding

Whether the mating happens successfully or not, the process consumes a lot of energy.
Therefore, in the new position, WSs forage for food resources. As aforesaid, to assess the
position for food availability, it is evaluated by the objective function. If the value of the
objective function is higher than the previous state, it means that it has found the food for
recovery. But if the objective value is less than the former state, it should move toward the best
habitat containing the highest fitness. To this end, Eq. (12) is defined for transferring to the new
position around the best WS of lake (WS},) containing a good deal of food resources, as shown
in Fig. 5.

WS = WSf + 2rand. (WSE, — WSF) (12)

6.5. Death and succession

In order to determine the result of the food attainment process, the objective function is
evaluated and is compared with that of the prior position. If the new fitness is lesser, the WS
will die, because it not only could not find food but also increased the battle danger with the
WSs of the destination territory. In this case, the newly matured larva will succeed the dead WS
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as the keystone, and the position of him is randomly initialized inside the territory as Eq. (13). If
it were otherwise, the keystone would remain alive.

WS = Lbf + 2rand(Ubf — Lbf) (13)

Ubjt and Lbjt denote the maximum and minimum values of WS’s position inside
jMterritory. In other words, they determine the boundaries of died WS’s territory.

6.7. Termination of WSA

In the last step of the algorithm, if the termination condition is met, the algorithm stops and
reports the best-experienced position. But if the condition is not satisfied, it will return to the
mating step for a new loop of the life cycle and territory establishment. In this paper, the
maximum number of function evaluations (MaxNFE) is considered as the termination condition
in all problems. However, other conditions such as the maximum number of life cycles
(MaxCycle) can be implemented as a stopping condition of WSA.

7. DISCUSSION

In this article, multilayer perceptron neural network was used to predict the naming of nodes for
the optimal wave front. This method is actually an extension of Sloan's method with neural
network. Two hidden layers with 15 and 13 neurons were used in this network. This neural
network was combined with Water Strider meta-heuristic algorithm and weights and biases
were calculated with this algorithm. The R values as well as the comparison of output and target
are given in Figure 6 for training, testing and validation data.

Quality evaluation criteria such as root mean square error (RMSE) and correlation
coefficient (R) were used for evaluation. The following equations show the formulation of these
criteria:

N
RMSE = Z(ZO — 2,)2/N (14)
i=1
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Figure 6: The result of ANN-WSA
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N — 2
R= |1- 2—‘;1(20 Zf)z (15)
Yiz1(z0 — 7

For a better understanding, two examples are given in the next section and their comparison
with the Sloan method.

8. EXAMPLES

In this section, three graphs are given as examples so that the root-mean-squared-error
wavefront ... for these examples are obtained and compared with Sloan’s algorithm.

Table 2: Comparison of the results

Example 1 2 3
No. of nodes 224 432 464
No. of elements 800 1352 1884
Emse by Sloan 11.73 19.91 28.07
F,rnse by ANN-WSA 5.98 11.23 19.89

Figure 7: The graph model 1
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Example 1

A circular FEM with 224 nodes and 800 elements is considered as shown in Figure 7. For this
model the application of the Sloan’s method and the present hybrid method result in wavefronts
provided in Table 2.

Figure 8: The graph model 2

Example 2

A FEM with 432 nodes and 1352 elements is considered as shown in Figure 8. For this model
the application of the Sloan’s method and the present hybrid method result in wavefronts
provided in Table 2.

Example 3

A FEM with 464 nodes and 1884 elements is considered as shown in Figure 9. For this model
the application of the Sloan’s method and the present hybrid method result in wavefronts
provided in Table 2.
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Figure 9: The graph model 3
9. CONCLUSION

A combined graph-neural-network-water strider method is presented for the nodal
ordering of the graph models of FEMSs, which leads to their nodal ordering with small forms for
the corresponding equations. This method systematically selects the coefficients of the graph
parameters for the priority function. The main goal of this paper was to combine the potentials
of graph theory, artificial neural networks and Water Strider algorithm in a sorting algorithm.
This method was actually a generalization and development of the Sloan model with neural
network and meta-heuristic algorithm. The present method leads to reasonable wavefronts and
its applications can be easily extended to the priority function with more graph parameters. The
comparison of the results with three examples was investigated and it showed that the
development of Sloan with neural network improves and reduces the error.
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