
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  

Int. J. Optim. Civil Eng., 2021; 11(1):101-112 

 
 

 

ESTIMATION OF ROADHEADER PERFORMANCE USING 

RELEVANCE VECTOR REGRESSION APPROACH-A CASE 

STUDY 
 

H. Fattahi*, † 

Department of Earth Sciences Engineering, Arak University of Technology, Arak, Iran 

 

ABSTRACT 
 

Mechanical excavators are widely utilized in civil/mining engineering projects. There are 

several types of mechanical excavators, such as an impact hammer, tunnel boring machine 

(TBM) and roadheader. Among these, roadheaders have some advantages (such as, initial 

investment cost, elimination of blast vibration, minimal ground disturbances and reduced 

ventilation requirements). The poor performance estimation of the roadheaders can lead to 

costly contractual claims. Relevance vector regression (RVR) is one of the robust artificial 

intelligence algorithms proved to be very successful in recognition of relationships between 

input and output parameters. The aim of this paper is to show the application of RVR in 

prediction of roadheader performance. The estimation abilities offered using RVR was 

presented by using field data of achieved from tunnels for Istanbul’s sewerage system, 

Turkey. In this model, Schmidt hammer rebound values and rock quality designation (RQD) 

were utilized as the input parameters, while net cutting rates was the output parameter. As 

statistical indices, coefficient of determination (R2) and mean square error (MSE) were used 

to evaluate the efficiency of the RVR model. According to the obtained results, it was 

observed that RVR model can effectively be implemented for roadheader performance 

prediction. 
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1. INTRODUCTION 
 

Compared to other excavation methods, the use of roadheaders has several advantages such 

as, reduced ventilation requirements, excavation capacity, minimal ground disturbances, 

improved safety, blast vibration elimination, less over excavation, flexibility and cost. 

Consequently, roadheaders have been utilized extensively in civil/mining engineering 

projects. Roadheader performance prediction for any geological formation is one of the main 

concerns in determining the economics of a tunneling operation. A critical issue in 

successful roadheader application is the ability to evaluate and predict the machine 

performance named net cutting rate.  

Several researches are conducted to find a significant relationship between the 

roadheader performance and other parameters influencing roadheader performance [1-8]. 

Also, during the last decades, researchers have focused on developing performance 

estimation models for roadheaders. Fowel and Johnson [9] introduced a model based on 

results achieved from simulation of excavating machines in the laboratory, in which three 

parameters of the swept area, the cutter head advance, and the rate per minute are applied to 

model the rate of the roadheader performance. Copur et al. [10] applied the data collected 

from a roadheader at Colorado School of Mine to predict the roadheader performance based 

on three factors, the roadheader weight, the cutterhead power, and the roadheader 

penetration index. Sandbak [11] and Douglas [12] a rock classification system was used to 

explain the changes of roadheader advance rates at San Manuel Copper Mine in an inclined 

drift at an 11% grade. Bilgin et al. [13] and Bilgin et al. [14] and Ebrahimabadi et al. [15] 

studied a roadheader performance model based on rock quality designation (RQD) and UCS. 

Bilgin et al. [16] studied some geological and geotechnical factors affecting the performance 

of a  roadheader in an inclined tunnel. Ebrahimabadi et al. [17] applied predictive models for 

roadheaders’ cutting performance in coal measure rocks.  Ebrahimabadi et al. [18] have 

suggested a method to predict the performance of roadheaders based on the Rock Mass 

Brittleness Index. Abdolreza and Siamak [19] developed a model to predict roadheader 

performance using rock mass properties.  

However, in recent years, utilize of developed methods such as computational 

intelligence methods, which can successfully model the behavior of linear and nonlinear 

involved in data, is useful. Such as, Seker and Ocak [20] used machine learning methods 

(ZeroR, random forest, Gaussian process, linear regression, logistic regression and multi-

layer perceptron) for prediction of predict roadheader performance. Faradonbeh et al. [21] 

used genetic programming (GP) and gene expression programming (GEP) techniques for 

prediction of predict roadheader performance. In this research, a database of machine 

performance and some geomechanical parameters of rock formations from Tabas coal mine 

project, the largest and fully mechanized coal mine in Iran, has been established, including 

instantaneous cutting rate (ICR), uniaxial compressive strength, Brazilian tensile strength, 

rock quality designation, influence of discontinuity orientation (Alpha angle) and specific 

energy. Ghasemi [22] developed a site-specific regression model for assessment of road-

header cutting performance of Tabas coal mine based on rock properties such as Brazilian 

tensile strength, rock mass cuttability index, and alpha angle (α: is the angle between the 

tunnel axis and the planes of weakness. Fattahi [23] applied soft computing methods for the 
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estimation of roadheader performance from schmidt hammer rebound values. But it should 

be noted that some computational intelligence methods may result in very poor 

generalization or even over-fitting when parameters involved in modeling are not chosen 

wisely. Support vector machine (SVM) used for regression, the so called support vector 

regression (SVR), is a suitable machine learning methodology introduced in the early 1990s 

[24]. However, even this capable network suffers from numerous limitations including 

parameters and kernel selection which may have significant effect on its prediction 

efficiency [25,26]. Relevance vector machine based regression (RVR) is a Bayesian sparse 

kernel technique used for regression having most of the SVR characteristics while avoiding 

its limitations [27]. It typically leads to much sparser models and correspondingly faster 

performance on test data as well as a sophisticated generalization error [28,29].  

The RVR has not yet been used for roadheader performance prediction in any kinds of 

mechanical tunneling construction project. In this study, the RVR is proposed for indirect 

roadheader performance prediction. The goodness of RVR model was evaluated by using 

the data available in the literature. Finally, a statistical error analysis has been performed on 

the modeling results to investigate the effectiveness of the proposed method. 

 

 

2. RELEVANCE VECTOR REGRESSION 
 

RVR is based on Bayesians approach in which a prior is introduced over the model weights 

and each weight is administrated by one hyperparameter. The most probable value of each 

hyper parameter is iteratively evaluated from the data. The model is sparser since the 

posterior distributions of some proportion of the weights are set to zero.  

Consider a given training set of M regression data points   
1

,
M

m m m
x y


, where 

M

mx R  is the input data to the actual plant and my R  is the output data of the actual 

plant and is assumed to contain Gaussian noise ε with mean 0 and variance 2 . In high 

dimensional feature space z, the outputs of an extended linear model can be expressed as a 

linear combination of the response of a set of M basis functions as follows: 
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Now, the predicted output ŷ of the true value y is 
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In the above nonlinear function estimation model, m is the weight vector and  .m  is 

an arbitrary basis function (or kernel). In the present work, RBF is used as the kernel 

function because of its ability to reduce computational complexity of the training process. 
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The vector form of  1

T

M   and the responses of all kernel function 

     1

T

Mx x x       maps the input data into a high dimensional feature space z. 

Hence, the obtained error signal could be stated as 

 

 2ˆ 0,m m my y N     (3) 

 

The objective of relevance vector regression is to find the finest value of such that 

 ˆ ,y x  makes good predictions for unknown input data. For the RVR model in equation 

(2) let  1

T

M   be the vector of M independent hyperparameters, each associated 

with one model weight or kernel function.  

The Gaussian prior distributions of the RVR framework are chosen as 
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Here, M is the hyperparameter that governs each weight m . The likelihood function of 

independent training targets , 1,...,my y m M  can be stated as 
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The above likelihood function is enhanced by the prior in equation (4) defined over each 

weight to reduce the complexity of the model and to avoid over fitting. Now, using Bayes’ 

rule, the posterior distribution over model weights could be calculated as follows: 
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The posterior distribution in equation (6) is a Gaussian distribution function, 
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whose covariance and mean are respectively given by 

 

 
1

2 ,T A  

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2 T y   
 

(9) 

 

with  A diag  . 

 

Marginalization of the likelihood distribution over the training targets given by equation 

(5) can be obtained by integrating out the weights to acquire the marginal likelihood for the 

hyperparameters. 
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Here, the covariance is given by 
2 1 TC I A    .In equations (8) and (9), the only 

unknown variables are the hyperparameters α. The values of these hyperparameters are 

estimated using the framework of type II maximum likelihood [30]. 
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Logarithm is included in equation (11) to reduce computational complexity. 

Maximization of the logarithmic marginal likelihood in equation (11) over α leads to the 

most probable value αMP which provides the maximum a posteriori (MAP) estimate of the 

weights.  

The ambiguity about the optimal value of the weights, given by (6), is used to express 

ambiguity about the predictions made by the model, i.e., given an input x∗, the probability 

distribution of the corresponding output y∗ is given by the predictive distribution 
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which has the Gaussian form 
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The mean and variance of the predicted model are, respectively, 
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* * *2 2 * *ˆ(x ) and (x ) (x )T TY           (14) 

 

Maximizing the logarithmic marginal likelihood in (11) leads the optimal values of many 

of the hyperparameters αm typically infnite yielding a posterior distribution in (6) of the 

corresponding weights m that tends to be a delta function peaked to zero. Thus, the 

corresponding weights are deleted from the model along with its accompanying kernel 

function [31-34]. Hence, very few data points corresponding to nonzero weights build the 

RVR model and are called the relevance vectors. This results in better sparseness of RVR 

model than SVR model. Thus, the computation time for prediction using RVR model is 

reduced significantly. In this paper, the RVR model is used for prediction of roadheader 

performance. 

 

 

3. ESTIMATION OF ROADHEADER PERFORMANCE 
 

3.1 Inputs and output data 

Dataset applied in this study for determining the relationship among the set of input 

(Schmidt hammer rebound values  and RQD) and output (net cutting rates of the roadheader 

for each zone) variables are gathered from open source literature [35,36]. These data 

recorded previously during the construction of tunnels for Istanbul’s sewerage system have 

been evaluated. Schmidt hammer rebound values from 36 different rock zones were 

collected together with net cutting rates of the roadheader for each zone. Rebound tests were 

carried out with a Proceq N-type hammer. On any one rock type at least three sets of test 

were conducted, depending on the geology of the encountered rock formations. At each test 

point 15–20 continuous impacts were made, and the suspected low values were excluded 

from the calculation of a mean value (R1-values) if they satisfy Chauvenet’s criterion (Test 

Procedure 1). Test Procedure 2: Select the peak rebound value from five continuous impacts 

at a point and discard the remaining values (R2-values) [37]. Test Procedure 3: Select the 

peak rebound value from ten continuous impacts at a point and discard the remaining values 

(R3-values) [38]. A detailed description of the database can be found in [35,36]. Descriptive 

statistics of the all data sets are shown in Table 1. 

 
Table 1 Statistical description of dataset utilized for construction of model 

Parameter Min Max Average 

Inputs 

RQD (%) 0 100 53.94 

R1-value 29 63 49.78 

R2-value 30 61 47.67 

R3-value 32 64 51.75 

Output Net cutting rate (m3/h) 2 25 11.39 

 

3.2 Pre-processing of data 

In data-driven system modeling, some pre-processing steps are commonly implemented 
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prior to any calculations, to eliminate any outliers, missing values or bad data. This step 

ensures that the raw data retrieved from database is perfectly suitable for modeling. In order 

to softening the training procedure and improving the accuracy of prediction, all data 

samples are normalized to adapt to the interval [0, 1] according to the following linear 

mapping function: 

 

minmax

min

xx

xx
xM




  (15) 

 

where x is the original value from the dataset, xM is the mapped value, and xmin (xmax) denotes 

the minimum (maximum) raw input values, respectively.  

In addition to the normalization, mean square error (MSE) and coefficient of 

determination (R2) are two conventional criteria considered to assess the efficiency of the 

networks. The MSE is calculated using the following equation: 

 

2

1

1
ˆ( )

n

k k

k

MSE t t
n 

   (16) 

 

where tk be the actual value and ˆ
kt be the predicted value of the kth observation and n is the 

number of samples used for training or testing the network. MSE is routinely used as a 

criterion to show the discrepancy between the measured and estimated values of the 

network. Coefficient of determination, R2, is also calculated as 
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R2 is widely used as a representation of the initial uncertainty of the model. The best 

network model which is unlikely to build, would have MSE=0 and R2 =1. 

 

 

4. RESULTS AND DISCUSSION 
 

In this study, RVR model was utilized to build a model for the prediction of roadheader 

performance from available data, using MATLAB environment. A dataset that includes 37 

data points was employed in current study, while 80% data points were utilized for 

constructing the model and the remainder data points were utilized for model performance 

evaluation. In this model, Schmidt hammer rebound values and RQD were utilized as the 

input parameters, while net cutting rates was the output parameter. 

In RVR model, hyper parameter estimation is carried out by expectation maximization 

(EM) updates on the objective function [27,39]. For this RVR model, radial basis function 
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(RBF) kernel is used with the width parameter estimated automatically by the learning 

procedure [27,39] which improves generalization ability and reduces computational 

complexity of the training process. Thus, unlike in SVR there is no necessity for 

computationally expensive determination of regularization parameter by cross validation 

technique. Also in the RVR model confidence intervals, likelihood values and posterior 

probabilities could be explicitly encoded easily. 

After modeling, a comparison between estimated values of net cutting rates by the RVR 

model and measured values for data sets at training and testing phases is shown in Fig. 1. As 

shown in Fig. 1, the results of the RVR model in comparison with actual data show a good 

precision of the RVR model. 

 

 
(a) 

 
(b) 

Figure 1. Comparison between measured and estimated net cutting rates for a) training datasets, 

b) testing datasets 

 

Furthermore, a correlation between estimated values of net cutting rates by the RVR model 

and measured values for data sets at training and testing phases is shown in Fig. 2. 
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(a) 

 
(b) 

Figure 2. Correlation between measured and estimated net cutting rates for a) training datasets, b) 

testing datasets 

 

Also, performance analysis of the RVR model for predicting net cutting rates is shown in 

Table 2. The performance indices obtained in Table 3 indicate the high performance of the 

RVR model that can be used successfully to the estimation of the net cutting rates.  
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Table 2: Performance analysis of the RVR model for predicting net cutting rates 

Description MSE  R2 

RVR model 
Training 0.0345 0.854 

Testing 0.0224 0.899 

 

 

5. CONCLUSION 
 

Performance prediction of roadheaders plays a crucial role in the successful application of 

such machines in mining and civil industries. The more precise prediction accomplished, the 

more effective cutting and production rates achieved. In this study, the RVR technique has 

been used for estimating the roadheader performance. It is observed that the Schmidt 

hammer rebound values and RQD have major effect on the roadheader performance. So, the 

model was generated based on relevant properties. The following conclusions can be drawn: 

 The RVR with MSE=0.0224 and R2= 0.899 is a reliable system modeling technique for 

predicting roadheader performance with highly acceptable degree of accuracy and 

robustness. 

 This study shows that the RVR approach can be applied as a powerful tool for modeling 

of some problems involved in tunnel engineering. 
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