دوره 9، شماره 3 - ( 3-1398 )                   جلد 9 شماره 3 صفحات 523-499 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahrouzi M, Barzigar A, Rezazadeh D. STATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION. IJOCE 2019; 9 (3) :499-523
URL: http://ijoce.iust.ac.ir/article-1-403-fa.html
STATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION. عنوان نشریه. 1398; 9 (3) :499-523

URL: http://ijoce.iust.ac.ir/article-1-403-fa.html


چکیده:   (21572 مشاهده)
Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimization as a powerful meta-heuristic with several engineering applications. Special combination of static and dynamic opposition-based operators are hybridized with CBO so that its performance is enhanced. The proposed OCBO is validated in a variety of benchmark test functions in addition to structural optimization and optimal clustering. According to the results, the proposed method of opposition-based learning has been quite effective in performance enhancement of parameter-less colliding bodies optimization.
متن کامل [PDF 393 kb]   (4855 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: 1397/12/3 | پذیرش: 1397/12/3 | انتشار: 1397/12/3

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb