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ABSTRACT 
 

To ensure efficient performance of irrigation canals, the losses from the canals need to be 
minimized. In this paper a modified formulation is presented to solve the optimization model 
for the design of different canal geometries for minimum seepage loss, in meta-heuristic 
environment. The complex non-linear and non-convex optimization model for canal design is 
solved using a probabilistic search algorithm namely Probabilistic Global Search Lausanne 
(PGSL). The solutions are found to be competitive to those reported in literature while applied 
for different example problems. To suit for real field applications, three site specific 
constraints are considered and the sensitivity of  solutions for the most popular trapezoidal 
canals is investigated. The study shows the potential of the proposed approach to perform 
optimal design of irrigation canals for minimum seepage loss. 
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1. INTRODUCTION  
 

Optimal design of irrigation canals is essential for the planning and management of irrigation 
projects. However, the losses from canals need to be minimized to ensure the efficient 
performance and effective utilization of water. Seepage loss is one of the major components of 
water loss from canals. A well maintained canal with 99 %  perfect lining reduces seepage 
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about 30-40% and the seepage cannot be controlled perfectly [1]. The proper monitoring of 
seepage loss from canals is essential in saving the water resource during its conveyance and 
such attempts are crucial in arid climatic zones. In the past, many researches attempted to 
quantify the amount of seepage and many of them succeeded in presenting models for the 
same[2-8]. Attempts were also made in the direction to incorporate the seepage loss in the 
canal design procedure [9-10]. 

Swamee et al., [11] proposed an optimization model for minimum seepage loss design of 
popular channel geometries and  extended the study by adding evaporation loss [12]. 
Researchers like Chahar [13], Swamee and Kashyap [14] also obtained analytical solution for 
seepage from rectangular channels in a soil layer of finite depth and investigated the influence 
of the position of drainage layer. In the above studies the classical optimization procedures are 
followed and explicit equations are proposed after obtaining a large number of optimal 
sections for different design data. The non-linear optimization model (NLOM) for minimal 
seepage loss canal design comprises the minimization of seepage function as the objective 
function. Chahar [15] analyzed seepage from slit and strip channels as special cases of a 
polygon channel and also presented results for trapezoidal, triangular, and rectangular 
channels in graphical form and later on  simple expressions were presented for the curvilinear 
channels [16]. 

Swamee and Kashyap [14, 17] suggested equations for minimum seepage loss non-
polygon channels however there are some drawbacks in their method as highlighted by 
Kacimov [18]. Analytical solutions for computing the quantity of seepage from the non 
polygonal irrigation furrows with curved bed (CB) [19] and extensions were also made 
considering the variability of position of drainage layer below the canal bed [20].  

The flow resistance equation for uniform flow, along with the non-negativity of the decision 
variables, normally constitutes the constraints of the optimization problem. The resistance 
equation is an equality constraint of non-linear type, and any equality constraint that is 
nonlinear in nature would make the optimization problem a non-convex one [21].  The 
presence of ‘seepage function’ in the model make it quite complex and practical 
implementation of designed canal sections may be influenced by the site specific  constraints 
such as limitation of top width, depth or side slope (considering the stability of slopes). On 
incorporating such geometric constraints in the model would further complicate the non-
convex non-linear optimization problem (NLOP). Such NLOPs may subject to local trapping 
during the search towards global optima and difficult to solve by the gradient based classical 
optimization methods.  Such issues are addressed in past by Jain et al., [22], Janga Reddy and 
Adarsh [23, 24] for canal design problems. Therefore an efficient meta-heuristic (random 
search) approach may be a suitable alternative to solve the complex, non-linear and multi-
modal optimization models of canal design considering seepage loss. This paper presents   (a) 
a modified formulation to solve the model of minimal seepage loss design of irrigation canals 
of different geometries in a meta-heuristic environment using PGSL (2) an improvement of 
the model  by adding additional site specific geometric constraints to equip it for real field 
applications and the sensitivity of solutions. 
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2. PROBABILISTIC GLOBAL SEARCH LAUSANNE  
 

Probabilistic Global Search Lausanne (PGSL),  proposed by Raphael and Smith [25] is a 
random search optimization algorithm based on global sampling of the search space using a 
Probability Density Function (PDF). PGSL was developed starting from the observation that 
optimally directed solutions can be obtained efficiently through sampling the search space 
without using special operators. The principal assumption is that better points are likely to be 
found in the neighborhood of families of ‘good’ points [26]. Application of PGSL on many 
benchmark problems with multi-variable non-linear objective functions revealed that PGSL 
performs better than genetic algorithms and improved variants of simulated annealing [27].   

The search space is the domain of all potential solution points, which will be an N 
dimensional one with one axis corresponding to each variable, where N is the number of 
decision variables of the problem. The search space is sampled by means of assumed 
Probability Density Function (PDF) for all the decision variables in the form of histograms. 
Each axis is discretized into a fixed number of intervals (n) after defining the lower and upper 
bounds of the variables. After extensive experimentation, Raphael and Smith [25] suggested 
that ‘n’ can be selected as 20. To begin the search process the type of PDF can be assumed as 
uniform distribution. PGSL algorithm consists of four nested cycles: sampling cycle, 
probability updating cycle, focusing cycle, and sub-domain cycle. Each cycle serves a different 
purpose in search towards global optima. The sampling cycle performs a search over the 
entire domain (an exploration process); while the probability updating and focusing cycle 
refine the search in the neighbourhood of good solution (an exploitation process). 
Convergence is achieved in the sub-domain cycle. 

In the sampling cycle number of points (say NS) is generated randomly by giving a value 
for each variable according to the PDF. Each point is evaluated by the objective function and 
the best sample (sample which give minimum objective function value for a minimization 
problem) is selected. In a probability updating cycle, the sampling cycle is invoked for a 
number of times (say NPUC). After each iteration, the PDF of each variable is modified using 
the probability updating algorithm [26]. The interval containing the best solution is first 
selected, and then the probability of that interval is multiplied by a factor greater than 1. As 
per the original computer code [28] presented by Raphael, a multiplication factor of 1.2 can be 
used to have better exploitation process. The PDF thus generated is then modified to make the 
area under the density function equal to unity. This ensures that the sampling frequencies in 
regions containing good points are increased.  

In a focusing cycle, probability updating cycle is repeated for NFC (number of focusing 
cycle) times. After each iteration, the search is increasingly focused on the interval containing 
the current best point. The interval containing the best point is divided into uniform 
subintervals (usually 6 numbers as per [26]) keeping the fact that total intervals remains 
constant. A 50% probability is assigned to this interval sothat half of the points generated will 
be in this interval. The remaining probability is then distributed to the region outside this 
interval in such a way that the PDF decays exponentially from the best interval. ie., 
predominantly a single peak function is observed at this stage and about 3 % of the variables 
lie in the farthest interval [26]. Here the probabilities of region containing good solution are 
increased and that of less attractive solutions are decreased.  
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Figure 1. Flowchart of PGSL algorithm 

 
In sub-domain cycle, the focusing cycle is repeated NSDC (number of sub domain cycles) 

times and at the end of each iteration, the current search space is modified. In the beginning, 
the entire space is searched, but in subsequent iterations a sub-domain is selected for search. 
Initially half width is chosen and two scale factors (SDSF1 and SDSF2) are defined to scale 
down the axis width. The new axis width is found out by multiplying the current width by 
scale factor. SDSF1 is used if there is an improvement and SDSF2 is used if there is no 
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improvement of objective function value in the current iteration. According to Raphael and 
Smith [25], the value of SDSF2 is usually selected as 0.96 and SDSF1 can be fixed as 
SDSF1=N-1/N The sub-domain is selected by changing the upper and lower bound of each 
variable. While choosing the next sub-domain, the following precautionary measures can be 
used to avoid premature convergence [26]: 

 
(i) A higher value of scale factor (reduction factor) is chosen after an iteration that does 

not produce a better cost 
(ii) Statistical deviations of the values of the variable in previous iterations (usually 5 

iterations) are considered in determining the new minimum and maximum (bounds)  
The size of the sub-domain decreases gradually and the solution converges to a point.   
PGSL was successfully applied for water quality modeling in recent past [29-31] and an 

attempt was made for the comprehensive design of trapezoidal channels by Adarsh [32]. A 
flowchart of the PGSL algorithm in similar lines of the one presented by [33] is given in 
Figure 1.  

 
 

3. MODEL DESCRIPTION AND SOLUTIONS  
 

The optimal design of canals for minimum seepage loss involves the estimation of seepage 
loss subject to the flow and velocity constraints. The exact analysis of seepage loss from 
canals is quite complex. In the present study the simplified and approximated expressions 
proposed by Swamee et al., [11] and Chahar [16] were adopted to formulate the optimization 
model for minimum seepage loss design of irrigation canals.   

The development of optimization model is presented below. 
 

3.1. Seepage loss  

The steady seepage loss from an unlined or a cracked lined canal in a homogeneous and 
isotropic porous media, when water table is at very large depth, can be expressed as 

 
 ss kyFL =  (1)  

 
where, Ls is the seepage discharge per unit length of the channel  (m2/s); k is the hydraulic 
conductivity of the porous medium (m/s); y is the flow depth (m) and Fs  is the seepage 
function proposed as an improper integral by Vedernikov [3]  for triangular and trapezoidal 
sections and Morel-Seytoux [4] for the rectangular section. Swamee et al., [11] presented the 
following expressions to evaluate the seepage functions for different channel geometries 
considering the drainage layer is at a deeper level. 

 

 ( )[ ] 77.0
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for  triangular channels applicable in the range 10000 ≤≤ z  
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3.2. Model description and solution 

The optimization model for minimum seepage loss canal section can be expressed as follows: 
Minimize: 

 ss kyFzybL =),,(  (5) 
Subject to 
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Where  Q is the discharge (m3/s);  A is the flow area (m2); g is the acceleration due to gravity 
(m/s2) ; So is the longitudinal slope; R is the hydraulic radius (m) ; ε is the average roughness 
height of the canal lining (m) and ν   is the kinematic viscosity of water (m2/s); b is the bed 
width of trapezoidal and rectangular sections and z is the side slope of triangular and 
trapezoidal sections. Also the irrigation furrows may be achieving a curvilinear shape in due 
course of time and posses advantages like easiness in construction with popular excavation 
equipments, quick drainage of rain water and no stress concentration at corners and many 
more [16]. In such canals the flow depth (y) and top width (Tt) are the design parameters. 
Figure 2 gives the definitions sketch of different canal geometries. 
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(a) Rectangular canal (b) Triangular canal 
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(c) Trapezoidal canal (d) Canal with curvilinear bottom 

Figure 2. Definition sketches of different canal geometries 
 
Equation (6) is the resistance equation proposed by Swamee [34]. To solve in a meta-

heuristic environment, the flow resistance constraint φ1  can be expressed as follows: 
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where ξ is a small positive number. 
To ensure the velocity of flow within the permissible limits, the following constraints are 

added 
 ( ) 0),,( max2 ≥−= VVzybϕ  (8) 
 
 ( ) 0),,( min3 ≥−= VVzybϕ  (9) 
 
where, V is the average flow velocity (m/s)and Vmax and Vmin are the maximum and minimum 
permissible velocities respectively. 

The data for the example problem considered in this study was adopted from Swamee et 
al., [11]. The design discharge Q =250 m3/s, longitudinal slope = 0.0001.The canal lining has 
ε =1 mm. The canal lining is assumed to be cracked and having k =1x10 (-6) m/sec. The water 
temperature is 20oC and ν =1.1x10 (-6) m2/s. The permissible velocity is to be kept between 1.5 
m/s to 2 m/s. The optimization model involving Equation (5) and constraints φ1 to φ3 
(Equations (7)-(9)) is solved using PGSL.  

The PGSL based solutions were obtained by solving the developed optimization models 
with the help of PGSL algorithm in MATLAB environment. The optimization procedure is 
initiated with PDF of possible solutions. The constraints are handled in such a way that if any 
of the generated trial solution violates the constraints, such solutions are penalized by giving a 
suitable penalty to the fitness. The number of intervals, number of sub-domain intervals, 
SDSF2 etc are found to be insensitive to the problem type and NS, NPUC and NFC can be 
fixed as 2,1 and 10-20N respectively [26]. In a search for the optimal solution 2 sampling 
cycles, 1 probability updating cycle, 60 focusing cycle and 30 sub-domain cycle are used in 
the present study. In the solution process a different random population gives similar solutions 
indicate that the global optimum has reached. The results are presented in Table 1. 
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Table 1. Minimum seepage cost canal dimensions 

Model Method b (m) y (m) z Seepage loss 
(m2/s) 

Classical# 13.055 7.929 0.598 4.61x10(-5) Trapezoidal 
(Basic Model) PGSL 12.381 8.210 0.588 4.611x10(-5) 

Rectangular 
(Basic Model) PGSL 17.602 8.282 0.000 4.911x10(-5) 

Triangular 
(Basic Model) PGSL 0.000 13.825 0.768 5.051x10(-5) 

 
The results of the model for trapezoidal canal along with that reported by Swamee et al. 

[11] are presented in Table 1. Similar solutions were obtained also for triangular and 
rectangular canals. The solution show that the seepage is minimum for the trapezoidal section 
when compared to other geometries and the result is similar to the one reported by Swamee et 
al. [11].  

 
3.2.1. Curvilinear channels 

For the irrigation furrows with curvilinear bottom the seepage loss is quantified by the 
equation proposed by Chahar [16]. 
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where G= Catalan’s constant=0.915965594 and Tt is the top width of the channel. 

Equation (10) is the objective function of the optimization model and Manning’s resistance 
equation in the following form is used as the constraint. 
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Where P is the wetted perimeter and n is the Manning’s roughness coefficient. 

The design of curved channel is performed for the following data [16]: Discharge =50 
m3/s, Longitudinal slope=0.001 Manning’s coefficient=0.035, hydraulic conductivity of the 
porous medium, k = 5 x 107 m/sec. 

The results are presented in Table 2. In all the three cases it is found that PGSL gives 
solutions competent or better than that with the classical procedure. 
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Table 2. Optimal solution of curvilinear channels 

Model Method Tt (m) y (m) Seepage loss (m2/s) 

Classical* 3.062 7.561 7.906 x10(-5) Curvilinear bottom 
(Basic Model) PGSL 3.062 7.553 7.905 x10(-5) 

Classical* 13.114 2.000 9.248 x10(-5) Curvilinear bottom 
(restricted depth) PGSL 13.091 2.000 9.241 x10(-5) 

Classical* 6.000 3.911 8.238 x10(-5) Curvilinear bottom 
(restricted top width) PGSL 6.000 3.867 8.213 x10(-5) 

Note : # Swamee et al. [11]; *Chahar [16] 
 

3.3. Minimum seepage loss trapezoidal canals with geometric constraints 

The conventional optimization formulation can be modified to make it suit for fulfilling 
geometrical restrictions imposed by field conditions. The maximum availability of top width, 
maximum allowable flow depth and fixed side slope parameter (depends on stability of soil 
slopes) are thee such scenarios considered independently in this study, for the most popular 
trapezoidal geometry. 

The limitation in top width of channel can be accounted by imposing an additional 
constraint such as Equation (12) along with the basic optimization model presented in Section 
3.2. 
 0)(),,( max4 >=−= tt TTzybϕ  (12) 

 
where, Ttmax is the maximum permissible top width and  the top width Tt for trapezoidal 
channels is defined as: 
 ))(2( fyzbTt ++=  (13) 

 
where f is the freeboard and in this study, f is taken as 0.5. 

For the best section, for b=13.055 m; y=7.929 m and z=0.598, the top width  is 23.14 m. 
By restricting the maximum permissible top width as 20 m to 15 m in steps of 1 m, the 
solutions are obtained. The trend in optimal solutions is presented in Figure 3. A reduction in 
seepage loss with increased value of permissible top width is observed as a result of reducing 
trend in  flow depth and increasing trend in other variables.  
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Figure 3. Sensitivity of solutions with permissible top width 

 
The limiting depth scenario can be addressed in channel design problem by imposing 

Equation (14) as an additional constraint along with the basic optimization model presented in 
Section 3.2. 
 0)()( max4 ≥−= yyyϕ  (14) 

 
where, ymax is the maximum permissible flow depth. The solutions were obtained by fixing the 
flow depth as 7.5 to 5 in steps of 0.5 m and results are presented in Figure 4. The optimal 
solutions are obtained for a flow depth value of permissible flow depth and a reducing trend is 
observed in the value of seepage loss with an increase in flow depth. This may be because of 
the mathematical character of the constraint equation.  

Solutions were also determined by restricting the side slope parameter in the range from 
0.2 to 0.6 in steps of 0.1 and results are presented in Figure 5. Identical trend as that observed 
for the depth restricted case is observed. ie., for this case also, a reduction in seepage loss is 
observed because of a reduction in other decision variables. 
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Figure 4. Sensitivity of solutions with permissible flow depth 
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4. CONCLUSIONS 
 

This study presents the usefulness of Probabilistic Global Search (PGSL) as efficient 
alternative method to perform optimal design of irrigation canals considering minimization of 
seepage loss as the objective function. The results show that the proposed PGSL approach 
performs equally well or better in some cases, than the solutions reported in the past based on 
classical procedures. The practical implementation of designed sections may demand the 
inclusion of site specific constraints in the canal design model. PGSL also found to be capable 
in handling the induced complexity due to such constraints, in addition to the high degree of 
non-linearity and non-convexity associated with the optimization model for minimum seepage 
loss canals. Thus PGSL approach is an efficient substitute for the optimal design of irrigation 
canals and can be used to perform the comprehensive design of irrigation canals considering 
different possible cost elements. 
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