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ABSTRACT 
 

The tuned mass damper inerter systems have recently received considerable attention in the 

field of structural control. The present work offers a practical configuration of such a device, 

called double tuned mass damper inerter (DTMDI) that connects the inerter into the damper 

masses rather than be attached to the main structure. Soil-structure interaction is also taken 

into account for the soft and dense soils as well as for the fixed based condition. The 𝐻∞ 

norm of the transfer functions for the roof response is minimized as the objective function. 

The parameters of DTMDI are optimized using opposition-switching search as an efficient 

parameter-less algorithm in comparison with lightning attachment procedure optimization, 

sine cosine algorithm and particle swarm optimization. The system performance is evaluated 

in the frequency domain, as well as in the time domain under various earthquakes including 

far-field records, near-field records with forward directivity and with fling-step. The results 

show superiority of opposition-switching search for optimal design of the proposed DTMDI 

so that it can significantly reduce both the roof displacement and acceleration response for 

all the SSI conditions. 
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1. INTRODUCTION 
 

Structures may experience significant vibrations under dynamic loadings such as wind and 

earthquake. Such vibrations can be mitigated using structural control systems, which are 

generally classified into four categories: active, passive, semi-active, and hybrid control. 

Although the active and semi-active control systems initially appeared promising, challenges 

such as the need for advanced technology, high maintenance costs, and reliability concerns 

have led the researchers to focus more on passive control systems due to their simplicity. 

Passive devices are added to the main structure to protect it by reducing the input energy [1]. 

 For years, increasing the TMD mass has been a popular passive control solution, while a 

few buildings incorporated large TMD’s on dedicated floors. Such large masses can pose 

architectural and structural stability issues, for which the inerter is a solution.   

Since the frequency ratio of TMD’s is defined based on the structure’s natural frequency, 

and the underlying soil significantly affects the fundamental mode, Soil–Structure 

Interaction (SSI) plays a crucial role in tuning such a control system. Bekdaş et al. [2] 

investigated a 40-story building equipped with a TMD, considering SSI. Kaveh et al. [3] 

applied a Chaotic Optimization Algorithm for tuning TMD in 10-story and 76-story 

buildings. 

Metaheuristic algorithms have been widely used for engineering problems [4–8]. Kamgar 

et al. utilized whale optimization algorithm for design of TMD considering soil-structure 

interaction [9]. Kaveh et al. applied charged system search for optimal design of TMD in 

benchmark examples [10]. Bekdas et al. tested three metaheuristic algorithms for 

optimization of TMD considering frequecy domain [11]. Khatibinia et al. applied multi-

objective particle swarm optimizer to tune TMD in the 40-story building [12].  

Recently, tuned mass damper inerter (TMDI) has been introduced, attracting widespread 

attention in the field of structural control [13]. A TMDI consists of a classical TMD 

combined with a mechanical two-terminal device called an inerter. The inerter, introduced 

by Smith in 2002, can generate a force proportional to the relative acceleration between its 

terminals [14]. In essence, it can create a virtual mass without adding actual physical weight.  

Some investigators have thus suggested connecting the second terminal of the inerter to 

building floors [15], adjacent structures [16], or seismic isolators [17].   

To overcome the connection challenges, it was offered to combine the inerter with a 

double tuned mass damper (DTMDI) [18,19]. The configuration has shown promising 

results without requiring direct attachment to specific building floors. Nevertheless, most 

TMDI-related studies have neglected the effects of soil flexibility. Elias and Djerouni 

analyzed a TMDI-equipped structure subjected to far-field and near-field ground motions, 

considering SSI [20]. Their findings demonstrated that the TMDI remains effective in 

reducing structural responses even when SSI is accounted for. 

The present study investigates performance of optimally designed DTMDI system under 

soil–structure interaction. As a case study, a 15-story shear building is analyzed considering 

three conditions; i.e. the Fixed base, the dense soil, and the soft soil beneath the foundation. 

The DTMDI parameters are optimized using four metaheuristic algorithms including 

Opposition-Switching Search (OSS) [21–23], Lightning Attachment Procedure Optimization 

(LAPO) [24], Sine Cosine Algorithm (SCA) [25] and Particle Swarm Optimization 

(PSO) [26]. The optimization objective is to minimize the norm 𝐻∞ of the transfer function 
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for the top displacement. The optimally designed DTMDI is further evaluated in frequency- 

and time-domain under a variety of earthquake excitations; categorized into far-field 

records, near-field with forward directivity, and near-field with fling-step.  

2. EQUATIONS OF MOTION WITH SOIL–STRUCTURE INTERACTION  

 

The equation of motion for an N-degree-of-freedom shear building without control, 

subjected to seismic excitation, can be expressed as follows: 

 

[ ] ( ) [ ] ( ) [ ] ( ) ( )t tt t t t+ + = −
t t t t

M u C u K u F  (1) 

 

where 𝑀𝑡, 𝐶𝑡, and 𝐾𝑡 represent the mass, damping, and stiffness matrices of the structure, 

respectively. 𝐹(𝑡) represents the external force vector due to ground motion. The vectors �̈�𝑡, 

�̇�𝑡 , and 𝑢𝑡  denote the floor acceleration, velocity, and displacement, respectively. The 

dimensions of the matrices and vectors may vary depending on whether SSI or control 

systems are considered.   

To incorporate SSI into the dynamics of the uncontrolled structure, the properties of the 

soil are added to the mass, damping, and stiffness matrices. The updated matrices and 

external force and response vectors are defined as per Equations (2) through (6). 
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𝑴, 𝑪, and 𝑲 denote the mass, damping, and stiffness matrices of the uncontrolled structure. 

The vector 𝒓 is a unit vector of appropriate dimension. 𝑍𝑖 denotes the absolute height of each 

floor relative to the foundation. 𝑚𝑓 , 𝐼𝑓 , 𝑢𝑓 , and 𝜃 represent the mass, moment of inertia, 

displacement, and rotation of the foundation, respectively. 𝑚𝑖  and 𝐼𝑖  are the mass and 

moment of inertia of each floor. The horizontal and rotational damping are represented by 𝑐ℎ 

and 𝑐𝜃, respectively, and the corresponding stiffness terms by 𝑘ℎ and 𝑘𝜃.  

In the present study, the structure is controlled using a Double Tuned Mass Damper 

Inerter (DTMDI). Fig. 1 illustrates the uncontrolled and DTMDI-controlled structures under 

the influence of soil–structure interaction. 

 
Figure 1: Uncontrolled (left) and DTMDI-controlled (right) building model considering soil–

structure interaction 

 

The governing equations for the DTMDI-controlled structure are redefined accordingly, 

where the contribution of the inerter element is incorporated into the mass matrix. 
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These equations can be rewritten in the state-space form as: 

 

( ) ( ) ( )gt t t= +Z AZ BX  (12) 

 

Here, 𝒁(𝒕) is the state vector, �̈�𝒈(𝑡) is the ground acceleration input, and matrices 𝑨 and 

𝑩 are the system and location matrices, respectively. They are defined as: 
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Where 𝟎 and 𝑰 are zero and identity matrices, respectively. The generalized mass matrix 

𝒎𝒈 and input vector 𝒓𝒈 are defined based on the degrees of freedom of the system including 

both SSI and DTMDI effects. 
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3. PROBLEM FORMULATION AND THE SOLUTION ALGORITHM 
 

Proper selection of the mass, stiffness, and damping parameters of DTMDI is crucial to fully 

exploit its potential. Therefore, three key parameters—mass ratio, damping ratio, and 

frequency ratio—are defined for each mass element of the DTMDI system. Due to practical 

limitations and the mechanical nature of the inerter device, the mass ratio can be assumed to 

be small, and only the optimal damping and frequency ratios are sought. In this study, the 

total mass ratio of the DTMDI system is set to 1% of the total structural mass. It is equally 

distributed between the two masses. The selected parameters are summarized in Table 1. 

 
Table 1: Optimization variable definitions and variable ranges. 

The limiting range of 

the variables  Optimization variables   Preselected variables 
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In recent years, the advancement of computational techniques has brought metaheuristic 

algorithms into focus for TMD parameter optimization. These algorithms are generally 

classified into single-agent and population-based methods, with the latter showing greater 

success. Hence, four population-based metaheuristic algorithms are utilized in this study to 

optimize the DTMDI system parameters. The optimization objective is to minimize the 

norm 𝐻∞ of the transfer functions for roof displacement. 

The transfer function of the governing equation for an N-degree-of-freedom DTMDI-

controlled building under SSI is defined as: 

 
1( ) ( )G s j −= −yC I A B  (17) 

 

where 𝑗 = √−1, 𝜔 is the complex frequency variable and 𝑪𝒚 is the output matrix used to 

extract roof displacement, defined as: 

 

1 1 ( 4) 1 ( 4) 1 2( 4)[[0 0 1 0 0 0 0] 0 ]n n n n−  +  +  +=
y

C  (18) 

 

Here, four additional degrees of freedom are considered: two for SSI and two for 
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DTMDI. The objective is defined as the minimization of norm 𝐻∞ of the transfer function. 

Hence, the optimization problem is formulated as: 

 

min max

min ( ; )

. .

X
G j X

s t

X X X




 

 (19) 

 

For solution of the problem, OSS (a powerful metaheuristic) is utilized in comparison 

with some other algorithms. They include Lightning Attachment Procedure Optimization 

(LAPO) [24], Sine Cosine Algorithm (SCA) [25,27] and Particle Swarm Optimization (PSO) 

[26]. The fair comparison conditions are addressed [27–29] ensuring that the initial 

population is identically shared between the algorithms in every independent run.  

The population size of 30 and prescribed number of 4000 function evaluations are 

applied for the current research work. PSO is implemented with extra parameters of 1, 2 and 

2 for the inertial, cognitive and social factors, respectively. 

 

3.1 Opposition-Switching Search (OSS) 

Opposition-Based Learning (OBL) is an emerging technique in the field of artificial 

intelligence and soft computing [30]. It leverages both an individual and its opposition to 

enhance exploration of an optimizer in the search space without extra computational effort. 

Based on the OBL concepts, Shahrouzi [21] has developed a meta-heuristic algorithm; 

called Opposition-Switching Search (OSS) that employs the following features: 
- Information sharing between the search-agents through a pseudo-mean solution. It 

utilizes a special type of crossover; that is picking up any of its components from 

randomly chosen members of the population. 

- Switching between such a solution and its opposite position as the starting point for 

walking through the search space 

- Elitist strategy by taking the best-so-far solution, 𝑋𝐺𝑏 , as the target for further walks 

The proposed OSS is, thus, presented via simple algorithmic steps as: 
- Generate a randomly positioned population of n individuals, and evaluate their cost 

function. 

- Repeat the following steps for each individual: 

o Calculate an individual 𝑌 by the proposed crossover on the entire population 

o Switch the pseudo-mean 𝑍  to either 𝑌  or its opposite Y , by equal chance. 

Several types of opposition have already been developed in literature [31]. Here, 

a simple definition is applied for opposite of a design vector 𝑌 as: 

L UY X X Y= + −  (20) 

in which 𝑋𝐿  and 𝑋𝑈  are the lower and upper bounds on the design vector, 

respectively.  

o Take the first walk direction as 𝑉1: 
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1 ( )GbV rand X Z=  −  (21) 

o Generate the vectors 𝑆1 or 𝑆2 by: 

1 ( )Gb iS rand X X=  −  (22) 

2 ( )i GbS rand X X=  −  (23) 

o Provide the second walk direction 𝑉2 by randomly switching between 𝑆1 and 𝑆2 

o Generate the candidate solution 𝑋𝑐,𝑖 by Equation 24 and evaluate its cost: 

, 1 2c i iX X V V= + +  (24) 

 
o Replace the current individual 𝑋𝑖 by the candidate solution 𝑋𝑐,𝑖 if it has lower 

cost than the current.  

- Exit the loop and identify the updated  𝑋𝐺𝑏  as the optimum as soon as termination 

criterion is met; For example, reaching the function calls to the prescribed number of 

function evaluations: 𝑁𝐹𝐸𝑚𝑎𝑥.  

A MATLAB code of OSS is given in the Appendix so that interested users can adopt it for 

their specific problems. It is given in special format to easily apply fair comparison 

conditions. 

 

 

4. OPTIMAL DESIGN OF THE CONTROL SYSTEM 
 

The control system is optimized using the norm 𝐻∞  of the transfer functions for roof 

displacement as the cost (objective) function. The adopted optimization framework follows a 

robust control strategy, making it independent of any specific excitation.   

Table 2 represents the optimization results obtained from each algorithm. It reveals that 

the proposed OSS has achieved the least cost (objective value), along with favorable mean 

and standard deviation of the responses, rendering its results more consistent and reliable in 

comparison with the others. 

 
Table 2: The DTMDI optimization results using different metaheuristic algorithms. 

SSI 

Condition 

Statistical 

Parameter 
OSS LAPO SCA PSO 

Fixed base 

Best 22.1769 24.1952 22.3132 22.4364 
Mean 22.2002 29.5791 22.6579 48.8932 
S.D. 0.0151 4.0514 0.3221 21.5273 

Dense soil 

Best 22.2217 24.2319 22.3336 22.4575 
Mean 22.2383 29.3318 22.6295 49.0114 
S.D. 0.0101 3.7491 0.2649 21.6025 

Soft Soil 

Best 22.8196 25.0279 23.0233 23.2074 
Mean 22.8395 29.6883 23.3363 51.5716 
S.D. 0.0090 4.2320 0.2422 23.0024 
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The cost function value obtained using LAPO was approximately 9% higher than that of 

OSS, meanwhile SCA differed by less than 1% and PSO showed deviation of at least 1%, 

respectively. Consequently, OSS is considered as the most effective algorithm among the 

treated methods.  

The results also indicate that, based on the optimal values derived from the algorithms, 

and particularly by OSS, the objective function increases as the soil becomes softer. 

Specifically, transitioning from fixed base to dense soil has resulted in rising up the values 

by less than 1%, while shifting from fixed base to soft soil has led to nearly 3% increase. 

The convergence behavior of each algorithm for different soil conditions is illustrated in 

Fig.2. Given the superior performance of the OSS algorithm, its optimized parameters were 

used in subsequent analyses. These optimized DTMDI parameters for each soil type are 

reported in Table 3.  

 
(a) 

  
         (b) (c) 

Figure 2: Convergence of the applied methods for: (a) fixed base, (b) dense soil, and (c) soft soil 

 

Fig. 3 displays the frequency-domain roof displacement responses for fixed base, dense, 

and soft soils. It is evident that the DTMDI system significantly reduced the peak structural 

response across all SSI conditions, compared with the uncontrolled case. Furthermore, the 

system showed better performance in reducing the objective function at lower frequencies, 

while maintaining a response behavior similar to that of the uncontrolled structure, which 

highlights the inherent stability of the DTMDI system. 
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Table 3: Optimal DTMDI parameters by OSS for different SSI conditions. 

SSI  

condition 

 

Prescribed Parameters Optimum parameters 

𝜇1 = 𝜇2 𝛽 𝑓𝑑1 𝜉𝑑1 𝑓𝑑2 𝜉𝑑2 

Fixed base 0.0050 0.1000 0.2902 0.0000 0.0100 1.3303 

Dense soil 0.0050 0.1000 0.2899 0.0281 0.0100 0.4327 

Soft soil 0.0050 0.1000 0.2901 0.0274 0.0105 0.4164 
 

 

 
Figure 3: Frequency response of the controlled and uncontrolled systems for 3 SSI conditions 

 

 

5. NUMERICAL MODELING 
 

To evaluate effectiveness of the DTMDI system, a 15-story shear building [32] is modeled 
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considering soil–structure interaction. Mass and stiffness quantities of each story are listed 

in Table 4. The damping matrix is generated using 2% inherent damping via classical 

Rayleigh method. The dynamic properties of the soil models are summarized in Table 5. 

 
Table 4: Mass and stiffness values of the 15-story building [32]. 

Story 
Mass 

(106𝑘𝑔) 
Stiffness 
(108𝑁/𝑚) 

Story 
Mass 

(106𝑘𝑔) 
Stiffness 
(108𝑁/𝑚) 

Story 
Mass 

(106𝑘𝑔) 
Stiffness 
(108𝑁/𝑚) 

1 2.11 2.16 6 1.97 0.59 11 1.64 0.25 

2 2.15 1.36 7 1.95 0.51 12 1.35 0.19 

3 2.13 1.02 8 1.94 0.43 13 1.80 0.10 

4 2.13 0.82 9 1.87 0.37 14 0.74 0.07 

5 2.04 0.69 10 1.74 0.31 15 0.51 0.04 

 

Time-domain analysis was conducted using real earthquake ground motions, categorized 

into three sets of seven records: far-field, near-field with forward directivity, and near-field 

with fling-step effects. Table 6 gives specification of such ground motion records. 
 

Table 5: Soil stiffness and damping parameters [33]. 

 

Two performance indices were defined to evaluate the system response in the time 

domain: 𝐽1 as the normalized peak roof displacement and 𝐽2 being the normalized peak roof 

acceleration; each one representing the ratio of the controlled to uncontrolled response. Such 

performance indices are defined as: 
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The subscripts c and u in Equations (25) and (26), correspond to the controlled and 

uncontrolled cases, respectively. 
 

 

 

 

Soil type Swaying damping 

𝐶ℎ(𝑁. 𝑠/𝑚) 

Rocking damping 

𝐶𝜃(𝑁. 𝑠/𝑚) 

Swaying stiffness 

𝐾ℎ(𝑁/𝑚) 

Rocking stiffness 

𝐾𝜃(𝑁/𝑚) 
Dense soil 4,99 × 108 1,65 × 1010 3,31 × 1010 3,63 × 1012 

Soft soil 7,48 × 107 2,47 × 109 1,10 × 109 1,43 × 1011 
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Table 6: Properties of the applied earthquake records [34]. 

 

Table 7 presents the computed performance criteria for each ground motion and soil 

condition. The results confirm that the DTMDI system has effectively reduced both 

displacement and acceleration at the roof level across all records and soil types. The mean 

values of 𝐽1 under far-field, forward-directivity near-field, and fling-step near-field records 

were 0.850, 0.906, and 0.903 for the fixed base; 0.855, 0.909, and 0.904 for the dense soil; 

and 0.878, 0.914, and 0.901 for the soft soil, respectively. 

The results indicate that the system yielded better performance under far-field records 

compared to both types of near-field excitations. Additionally, the average performance 

under fling-step records was slightly better than that under forward-directivity records. It 

was observed that for far-field and forward-directivity records, the normalized displacement 

# Earthquake Date Mw Station 
Component 

angle 
PGA (g) 

Far-field records 

1 Kern County 1952 7.5 Taft 111 0.18 

2 Imperial Valley 1979 6.5 calexico 225 0.27 

3 Loma Prieta 1989 7.0 Presido 00 0.10 

4 Northridge 1994 6.7 Century CCC 90 0.26 

5 Northridge 1994 6.7 Moorpark 180 0.29 

6 Northridge 1994 6.7 Montebello 206 0.18 

7 San Fernando 1971 6.6 Castaic 291 0.27 

Near-field records (Forward-Rupture Directivity) 

8 Cape Mendocino 1992 6.5 Petrolia 90 0.66 

9 Northridge 1994 6.5 Olive View 360 0.84 

10 Erzincan 1992 6.7 Erzincan EW 0.50 

11 Parkfield 2004 7.3 Fault Zone 1 90 0.50 

12 Morgan Hill 1984 6.7 Anderson Dam 340 0.29 

13 Superstition 

Hills 

1987 6.7 Parachute Test site 315 0.384 

14 Imperial-Valley 1979 7.5 Brawley Airport 225 0.16 

Near-field records (Fling-Step) 

15 Kocaeli 1999 6.8 Yarimca 060 0.32 

16 Chi-Chi 1999 6.5 TCU052 NS 0.44 

17 Chi-Chi 1999 6.8 TCU068 EW 0.50 

18 Chi-Chi 1999 6.9 TCU074 EW 0.59 

19 Chi-Chi 1999 7.0 TCU084 EW 0.98 

20 Chi-Chi 1999 6.5 TCU102 EW 0.29 

21 Chi-Chi 1999 7.5 TCU128 EW 0.14 
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increased with soil flexibility, while under fling-step records, the soft soil condition resulted 

in better performance than the fixed base and dense soil cases. 
 

Table 7: Performance indices under different SSI conditions and ground motion records. 

 𝐽1 𝐽2  𝐽1 𝐽2  𝐽1 𝐽2 

Far-fault records 

1 0.6773 0.9593  0.6315 0.9857  0.6800 0.9878 

2 0.8928 0.9023  0.8949 1.0000  0.8659 0.9797 

3 0.8370 0.9712  0.8401 0.9717  0.9255 1.0074 

4 0.9514 0.9629  0.9538 0.9849  0.9582 0.9872 

5 0.8631 0.9745  0.8687 0.9847  0.9139 0.9876 

6 0.8600 0.9683  0.8617 0.9960  0.8619 0.9970 

7 0.9314 0.9799  0.9346 1.0000  0.9411 1.00 

Near-Fault records (Forward-Rupture Directivity) 

8 0.9298 0.9591  0.9325 0.9701  0.9352 0.9728 

9 0.9423 0.9609  0.9443 0.9776  0.9463 0.9855 

10 0.9247 0.9565  0.9275 0.9660  0.9309 0.9512 

11 0.8802 0.9411  0.8841 0.9995  0.8977 0.9995 

12 0.9451 0.9584  0.9479 0.9998  0.9511 0.9982 

13 0.9064 0.9447  0.9096 0.9533  0.9162 0.9544 

14 0.8163 0.9499  0.8190 0.9598  0.8245 0.9609 

Near-Fault records (Fling-Step) 

15 0.9188 0.9422  0.9193 0.9461  0.9201 0.9493 

16 0.9504 0.9573  0.9503 0.9896  0.9482 0.9882 

17 0.8990 0.9072  0.8989 0.9072  0.8912 0.9117 

18 0.9561 0.9852  0.9586 0.9879  0.9550 0.9898 

19 0.9306 0.9740  0.9323 0.9549  0.9322 0.9527 

20 0.8606 0.9504  0.8616 0.9391  0.8575 0.9589 

21 0.8040 0.8855  0.8052 0.8864  0.8025 0.9018 

 

Regarding the acceleration response, the mean values of 𝐽2  under far-field, forward-

directivity, and fling-step records were 0.960, 0.953, and 0.943 for fixed base; 0.989, 0.975, 

and 0.944 for dense soil; and 0.993, 0.975, and 0.950 for soft soil, respectively. These results 

delcare that peak roof accelerations were generally higher for far-field records. The fling-

step records yielded the lowest acceleration values among the three sets, and with the 

exception of the forward-directivity group—where soft and dense soils exhibited similar 

results—the acceleration increased with soil softness. 

In general, the optimum DTMDI-controlled structure demonstrated superior performance 

in reducing both peak displacement and acceleration. Nearly in none of the cases did the 

controlled responses exceed those of the uncontrolled structure, except for a single instance 

under the record number 3 in soft soil, where the peak acceleration was approximately 1% 

higher at few time increments. Fig. 4 illustrates the time histories of roof displacement and 

acceleration responses under the record number 3 for all the treated SSI conditions. 

# Fixed base Dense soil Soft soil 



M. Shahrouzi, M. Fahimi Farzam, and J. Gholizadeh 

 

216 

 
Figure 4: The roof displacement and acceleration time histories under the record #3   

 

 

6. CONCLUSION 

 
The present study offered optimal configuration of a Double Tuned Mass Damper Inerter 

(DTMDI) system applied to a 15-story building as a case study with 2% inherent damping, 

taking into account soil–structure interaction effects. Three parameter-less and one most 

popular metaheuristic algorithms were compared in optimization of DTMDI parameters, 

with an objective function independent from random variation of the seismic excitations.  

Considering both a position and its opposite, empowered OSS to more efficiently explore 

the search space. According to the results, OSS showed superior performance in optimal 

design of DTMDI over SCA, LAPO and PSO. It stands on the first rank not only in the best 

results but also in the mean and standard deviation showing robust performance and stable 

convergence with overpassing local optima. The proposed OSS is also of practical interest; 

being a parameter-less algorithm that avoids extra tuning burden for extra parameters rather 

than just the population size and the prescribed number of function evaluations. 

The results from both frequency-domain and time-domain analyses demonstrated that the 

DTMDI system was effective in reducing the seismic responses across all three SSI 

conditions; i.e. the fixed base, the dense and the soft soil. Time-domain analyses were 
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conducted under a variety of far-field, forward-directivity near-field, and fling-step near-

field earthquake records. According to the normalized indices the greatest average reduction 

in the displacement occurred under far-field records, while the highest average reduction in 

acceleration was achieved under fling-step records.  

It is forth notifying that in none of the cases, the controlled response exceeded that of the 

uncontrolled structure. The matter underscores the robustness and reliability of the proposed 

DTMDI system under diverse geotechnical and seismic conditions. 

In conclusion, the present work confirmed the effectiveness of the DTMDI system in 

mitigating seismic responses in buildings with soil–structure interaction, and highlighted the 

essential role of intelligent optimization algorithms in the design of advanced passive control 

devices. 
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