
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  

Int. J. Optim. Civil Eng., 2024; 14(4):629-645 

 
 

 

  

 

 
    

 

 

 

ABSTRACT 
 

This paper employs neural network models to assess the seismic confidence levels at various 

performance levels, as well as the seismic collapse capacity of steel moment-resisting frame 

structures. Two types of shallow neural network models including back-propagation (BP) 

and radial basis (RB) models are utilized to evaluate the seismic responses. Both neural 

network models consist of a single hidden layer with a different number of neurons. The 

prediction accuracy of the trained neural network models is compared using two illustrative 

examples of 6- and 12-story steel moment-resisting frames. The obtained numerical results 

indicate that the BP model outperforms the RB model in predicting seismic responses.   

 
Keywords: seismic life cycle cost; performance-based design; nonlinear response history 

analysis; steel moment resisting frame. 
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1. INTRODUCTION 
 

Seismic design procedures utilize performance-based design [1] to provide adequate seismic 

resistance for structures at various performance levels. These approaches use nonlinear 

structural responses to determine the seismic damage levels of structural and nonstructural 

components. This design process, however, requires significantly more computational effort 

than other design methods. Structural engineers face the challenge of designing cost-

efficient and reliable structures capable of withstanding earthquakes. To address this 

challenge, performance-based design optimization techniques have been developed, leading 

to many studies in this field [2-10]. In recent years, metaheuristic algorithms have emerged 

as a prominent solution. Stochastic natural phenomena inspire these algorithms and their 
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computer implementation is simple [11-13]. However, despite their advantages, the 

application of these algorithms leads to a high computational burden due to the extensive 

number of nonlinear structural analyses required. Moreover, the seismic collapse capacity is 

a critical parameter for structural designers when evaluating the seismic performance of 

buildings and other structures. An accurate assessment of seismic collapse potential is 

essential, as the collapse of structures can lead to significant loss of life and substantial 

economic damages [14]. Therefore, understanding and accurately predicting this parameter 

is crucial for ensuring the safety and resilience of structures in earthquake-prone areas. 

Effective evaluation of seismic collapse capacity involves considering various factors, 

including structural nonlinear modeling, material properties, and the expected seismic 

demand. The development of reliable and efficient predictive tools is crucial in this context, 

as it enables accurate predictions while minimizing computational effort. By employing 

these advanced techniques, structural engineers can design structures that not only adhere to 

safety standards but also optimize costs and resources effectively. 

In recent years, neural networks have gained attention as an alternative solution to 

alleviate this computational burden. Neural networks can approximate complex functions 

and capture nonlinear relationships, making them suitable for predicting the seismic 

performance of structures with reduced computational effort. By integrating neural networks 

into the design process, structural engineers can achieve accurate predictions while 

minimizing the need for extensive computational resources. This paper explores the 

application of neural network models in assessing seismic confidence level (CL) at 

immediate occupancy (IO) and collapse prevention (CP) performance levels [15] and 

evaluating the collapse margin ratio (CMR) [16] of steel moment-resisting frame (MFR) 

structures. Specifically, two types of shallow neural network models, namely back-

propagation (BP) and radial basis (RB) are employed to evaluate the seismic responses. Both 

models consist of a single hidden layer, each with a different number of hidden layer 

neurons. The accuracy of the trained BP and RBF models is assessed through two 

illustrative examples including 6-story and 12-story steel MRFs. The numerical results 

demonstrate the superiority of the BP model over the RB model in predicting the seismic 

responses of the steel MRFs. 
 

 

2. SEISMIC CONFIDENCE LEVELS  
 

The performance evaluation procedures outlined in FEMA-350 [15] allow for estimating the 

confidence level (CL) for structures' ability to meet a specified performance objective. Each 

performance objective includes a defined structural performance level along with a 

corresponding hazard level, which must be achieved to ensure that performance. FEMA-350 

[15] considers IO and CP performance levels to align with earthquake hazards that have a 

50% and 2% probability of exceedance in 50 years, respectively. Predicting building damage 

for a given level of ground motion is challenging due to numerous uncertain factors 

affecting building behavior. Analysis procedures are not entirely accurate, and the character 

of the ground motion itself is uncertain. Therefore, it is inappropriate to imply an absolute 

performance assessment or the possibility of designing structures that will achieve desired 

performance objectives. FEMA-350 [15] employs a reliability-based probabilistic approach 
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to performance evaluation that explicitly accounts for inherent uncertainties. These 

uncertainties are quantified through a CL. A high CL indicates a strong likelihood that the 

building will be able to meet the desired seismic performance. The fundamental process of 

performance evaluation involves developing a mathematical model of the structure and 

assessing its response to earthquake hazards through nonlinear structural analysis. In this 

paper, interstory drifts are used as structural response parameters. These parameters reflect 

the damage sustained by individual structural components and the overall structure [15]. The 

confidence level for earthquake hazard levels can be computed using the following equation: 

 

𝐶𝐿𝐼𝑂 = 𝐶𝐷𝐹 (
𝑘𝛽𝑈𝑇

2
−

𝑙𝑛 (
𝛾𝛾𝑎𝐷

𝜑𝐶
)

𝛽𝑈𝑇
)

𝐼𝑂

 (1) 

𝐶𝐿𝐶𝑃 = 𝐶𝐷𝐹 (
𝑘𝛽𝑈𝑇

2
−

𝑙𝑛 (
𝛾𝛾𝑎𝐷

𝜑𝐶 )

𝛽𝑈𝑇
)

𝐶𝑃

 (2) 

 

in which 𝐶𝐷𝐹 is the normal cumulative distribution function; 𝑘 is the slope of the hazard 

curve; 𝛽𝑈𝑇 is an uncertainty measure; 𝛾 is a demand variability factor; 𝛾𝑎 is an analysis 

uncertainty factor; 𝐷 is the demand; 𝐶 is the capacity; and 𝜑 is a resistance factor [15].   
 

 

3. COLLAPSE MARGIN RATIO  
 

FEMA-P695 [16] proposes a methodology based on performing incremental dynamic 

analysis (IDA) to assess the seismic collapse capacity of structures. This approach requires 

the implementation of nonlinear response-history analyses using a suite of ground motion 

records specified by FEMA-P695. The IDA curves are developed by plotting the maximum 

inter-story drift ratio, 𝐼𝑆𝐷max, against the 5% damped spectral acceleration at the structural 

fundamental period, 𝑆𝑎(𝑇1,5%). The collapse margin ratio (CMR) of structures is defined as 

the ratio of the spectral acceleration for which half of the pre-defined earthquake records 

cause collapse (𝑆𝑎
50%) to the spectral acceleration of the maximum considered earthquake 

(MCE) ground motion (𝑆𝑎
MCE) as follows:  

 

𝐶𝑀𝑅 =
𝑆𝑎

50%

𝑆𝑎
MCE

 (3) 

 

While the FEMA-P695 methodology is widely used to determine the seismic collapse 

capacity of structures, it is highly time-consuming due to the need for numerous nonlinear 

response history analyses.  

Shafei et al. [17] proposed a simplified methodology to evaluate CMR spending at a 

reasonable computational cost. In this simplified methodology, a nonlinear static pushover 

analysis is performed to derive the pushover curve. Subsequently, an idealized trilinear 
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pushover curve is generated. As illustrated in Fig. 1, the parameters such as the roof drift 

ratio in the post-elastic–pre-capping region, 𝜓𝑝, roof drift ratio in the post-capping region, 

𝜓𝑝𝑐, and ultimate roof drift ratio, 𝜓𝑢 can be extracted from the pushover curve. The median 

collapse capacity, 𝑆𝑎
50%, of steel MRFs is evaluated using the following equation [17]:  

 

𝑆𝑎
50% = 𝑒𝑥𝑝 (𝑧0 + 𝑧1

𝑇

𝑁
+ 𝑧2𝛤𝑝 + 𝑧3ln(𝜓𝑝𝑐 − 𝜓𝑝) + 𝑧4ln (

𝜓𝑢 − 𝜓𝑝𝑐

𝜓𝑝𝑐 − 𝜓𝑝
)) (4) 

 

where 𝑁 is the number of stories; 𝑧0 to 𝑧4 can be determined using Table 1 (interpolation is 

necessary for various values of 𝑁); and 𝑇 is the fundamental period. 

 

 
Figure 1. Pushover curves 

 
Table 1: Values of z parameters  

Coefficients 
N 

4 8 12 

z0 1.80 2.27 2.49 

z1 –2.30 –4.54 –5.61 

z2 1.76 2.75 3.56 

z3 0.35 0.48 0.13 

z4 0.27 0.16 0.95 

 

 

4. NEURAL NETWORKS 
 

Neural network (NN) models are efficient tools for addressing complex and time-consuming 

problems. They are popular due to their ability to learn from external data and past 

experiences. A significant advantage of a well-trained NN model is its reduced 

computational burden when producing approximate solutions. Such approximations are 

valuable in problems where actual response computations are computationally intensive and 

quick estimations are needed. For these problems, an NN model is trained using data 
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generated from a series of carefully selected analyses. The data from these analyses are 

processed to create the necessary input and target pairs, which are then used to train the NN. 

This paper employs two well-known NN models: back-propagation (BP) [18] and radial 

basis (RB) [19]. 

 

4.1 BP model 

The BP model is a multi-layer perceptron trained by a back-propagation [18] technique. 

Although this model can incorporate multiple hidden layers, this paper focuses on a single 

hidden layer for simplicity as shown in Fig. 2. The transfer function of the hidden layer 

neurons is the tangent sigmoid function.  

 

 
Figure 2. BP neural network model 

 

The training algorithm of the BP model is a gradient descent optimization algorithm that 

adjusts the weights in the steepest descent direction according to the following equation: 

 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝛻𝑡 (5) 

 

where 𝑊𝑡, 𝛻𝑡, and 𝜂𝑡 are the weight matrix, and the current gradient matrix learning rate, 

respectively, at iteration t. 
The back-propagation technique uses the Levenberg-Marquardt (LM) [18] algorithm to 

approach second-order training speed without having to compute the Hessian matrix. In the 

LM algorithm, the updating of the weights is achieved as follows: 

 

𝑊𝑡+1 = 𝑊𝑡 − [𝐽𝑇𝐽 + 𝛼𝐼]−1𝐽𝑇𝐸𝑟

 

(6) 

  

where J is the Jacobian matrix, the first derivatives of the network errors to the weights); Er 

is a vector of network errors; α is a correction factor; and I is the identity matrix.  

Regularization is a technique employed to prevent overfitting. It achieves this by 

modifying the performance function of the model through the addition of a term. This term 

comprises the mean of the sum of squares of the weights, and is expressed as follows [18]: 

 Hidden Layer 

.  .  . 

.  .  . 

.  .  . 

Input Layer Output Layer 
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𝑚𝑠𝑒𝑟 = 𝛾 (
1

𝑚
∑ (𝐸𝑟𝑘)2

𝑚

𝑘=1
) +

1 − 𝛾

𝑛𝑤
∑ (𝑊𝑡,𝑙)

2𝑛𝑤

𝑙=1
 

(7) 

 

where 𝛾 and 𝑛𝑤 are the performance ratio and number of network weights, respectively; and 

m is the size of 𝐸𝑟𝑘. 

 

4.2 RB model 

The RB model is popular due to its fast training, generality, and simplicity. This model is a 

feedforward NN with a single hidden layer, as illustrated in Fig. 3. 

 

 
Figure 3. RB neural network model 

 

The hidden layer comprises neurons with Gaussian transfer functions. The outputs of 

these neurons respond significantly to inputs only within a specific range of values, known 

as the receptive field. The radius of the receptive field adjusts the sensitivity of the neurons. 

During training, the receptive field radius is determined so that the neurons can adequately 

cover the input space. The output layer neurons produce a linear weighted summation of the 

hidden layer neurons' responses. No actual training is performed to determine the weights of 

the hidden layer, instead, the transpose of the training input matrix is used as this layer's 

weight matrix [19]. 

 

𝑊1 = ∆𝑇

 

 (8) 

 

where, 𝑊1 and ∆ are the input layer weight and the training input matrices, respectively.   

A supervised training algorithm is employed to adjust the output layer weights. The 

output layer weight matrix is determined using the following equation: 

 

𝑊2 = 𝜗−1𝑇

 

 (9) 

 

where 𝑊2 is the output layer weights; 𝑇 is target matrix; and 𝜗 is the hidden layer output. 

 Hidden Layer 

.  .  . 

.  .  . 

.  .  . 

Input Layer Output Layer 
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5. METHODOLOGY 
 

This paper presents two planar steel MRFs with 6 and 12 stories. Figure 4 illustrates their 

topology and member grouping details. The vectors of design variables of these structures 

are as follows: 

 

For 6-story MRF 𝑋 = {𝐶1  𝐶2 … 𝐶6  𝐵1  𝐵2 …   𝐵6}𝑇 (10) 

For 12-story MRF 𝑋 = {𝐶1  𝐶2 … 𝐶18  𝐵1  𝐵2 …   𝐵12}𝑇 (11) 

 

 
Figure 4. 6 and 12-story steel MRFs 

 

The seismic responses of steel MRFs to be evaluated include confidence level at the IO 

performance level, 𝐶𝐿𝐼𝑂, confidence level at the CP performance level, 𝐶𝐿𝐶𝑃, and the 

collapse margin ratio, 𝐶𝑀𝑅. To enhance the efficiency of seismic response evaluation, one 

NN model is trained to predict 𝐶𝐿𝐼𝑂 and 𝐶𝐿𝐶𝑃. Additionally, another NN is trained to predict 

𝐶𝑀𝑅. The proposed BP and RB-based NN models are illustrated in Fig. 5.    
 

 
Figure 5. (a) BP-based and (b) RB-based NN models 

 

(a)                                                                            (b) 
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This paper employs a concentrated plasticity approach to simulate the behavior of steel 

components in MRFs. Using this method, the inelastic behavior of steel components is 

modeled with multi-linear nonlinear springs, which idealize the moment-chord rotation 

behavior for beams and columns. The primary advantage of these elements lies in their 

simplicity and computational efficiency, making them well-suited for simulating the seismic 

response of steel MRFs [20]. This paper uses the modified Ibarra Medina-Krawinkler 

concentrated plastic hinge model [21] to model the inelastic nonlinear behavior of beams 

and columns of steel MRFs. In the frame modeling process, panel zone deformation is 

neglected, rigid diaphragms are considered, and P-Delta effects are included.  

Database generation is the first step in the NN training process. For this paper, all the 

generated samples for steel MRFs must meet geometric (GEO) strength (STR) and strong 

column-weak beam (SCWB) constraints.  

According to the following GEO constraints, the dimensions of beams and columns at a 

framing joint, shown in Fig. 6, must be consistent.  

 

𝑏𝐵 ≤ 𝑏𝐶
𝑏𝑜𝑡 (12) 

𝑏𝐶
𝑡𝑜𝑝

≤ 𝑏𝐶
𝑏𝑜𝑡 (13) 

ℎ𝐶
𝑡𝑜𝑝

≤ ℎ𝐶
𝑏𝑜𝑡 (14) 

 

 
Figure 6. A typical framing joint 

 

 

According to the STR constraints outlined below, each structural element must satisfy the 

following requirements for non-seismic load combinations [22]: 

 

For 
𝑃𝑢

𝜙𝑐𝑃𝑛

< 0.2 : 
𝑃𝑢

2𝜙𝑐𝑃𝑛

+
𝑀𝑢

𝜙𝑏𝑀𝑛

≤ 1.0 (15) 

For  
𝑃𝑢

𝜙𝑐𝑃𝑛

≥ 0.2 : 
𝑃𝑢

𝜙𝑐𝑃𝑛

+
8

9

𝑀𝑢

𝜙𝑏𝑀𝑛

≤ 1.0 (16) 
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where 𝑃𝑢 is the required strength; 𝑃𝑛 is the nominal axial strength; 𝜙𝑐 and 𝜙𝑏 are the 

resistance factors; 𝑀𝑢 and 𝑀𝑛 are the required and nominal flexural strengths, respectively. 

In accordance with ANSI/AISC 341-16 [23], to delay column hinging, the SCWB 

constraints must be met in framing joints as follows: 

 

𝑀𝐵𝑒𝑎𝑚𝑠 < 𝑀𝐶𝑜𝑙𝑢𝑚𝑛𝑠 (17) 

 

in which, 𝑀𝐵𝑒𝑎𝑚𝑠 and 𝑀𝐶𝑜𝑙𝑢𝑚𝑛𝑠 represent the sum of the projections of the expected flexural 

strengths of the beams and columns at framing joints, respectively.  

Once a sample structure meets the abovementioned constraints, its seismic responses 

including 𝐶𝐿𝐼𝑂, 𝐶𝐿𝐶𝑃, and 𝐶𝑀𝑅, are assessed using a nonlinear static pushover analysis 

based on the displacement coefficient method. Fig. 7 presents a detailed flowchart for the 

dataset generation process. 

 

 
Figure 7. Dataset generation flowchart 

 

The NN model’s prediction accuracy evaluation metrics, including Mean Absolute 

Percentage Error (MAPE), Root Mean Square Error (RSME), and Coefficient of 

Determination (R-square or R2) used in this study, are as follows: 

 

Percentage Error 𝑃𝐸𝑖 = 100
𝑡𝑖 − 𝑦𝑖

𝑡𝑖

 (18) 

Mean Absolute Percentage Error 𝑀𝐴𝑃𝐸 =
100

𝑛𝑠
∑ |

𝑡𝑖 − 𝑦𝑖

𝑡𝑖
|

𝑛𝑠

𝑖=1

 (19) 
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Root Mean Square Error 𝑅𝑀𝑆𝐸 = √
1

𝑛𝑠
∑(𝑡𝑖 − 𝑦𝑖)

2

𝑛𝑠

𝑖=1

 (20) 

Coefficient of Determination  𝑅2 = 1 −
∑ (𝑡𝑖 − 𝑦𝑖)

2𝑛𝑠
𝑖=1

∑ (𝑡𝑖 − 𝑡̅)2𝑛𝑠
𝑖=1

 (21) 

 

where 𝑛𝑠 is the number of data samples; 𝑡𝑖 is the ith target response; 𝑦𝑖 is the ith predicted 

response; and 𝑡̅ is the mean of target responses. 

 
 

6. NUMERICAL EXAMPLES 
 

The dead load of 2500 kg/m and live load of 1000 kg/m are applied to all beams. The 

modulus of elasticity and yield stress of materials are E = 210 GPa and Fy = 235 MPa, 

respectively. The sections of beams and columns are selected from the W-shaped sections 

listed in Table 2.  

 
Table 2: Available W-shaped sections 

Columns 
 

Beams 

No. Profile No. Profile No. Profile No. Profile 

1 W14×48 13 W14×257  1 W12×19 13 W21×50 

2 W14×53 14 W14×283  2 W12×22 14 W21×57 

3 W14×68 15 W14×311  3 W12×35 15 W24×55 

4 W14×74 16 W14×342  4 W12×50 16 W21×68 

5 W14×82 17 W14×370  5 W18×35 17 W24×62 

6 W14×132 18 W14×398  6 W16×45 18 W24×76 

7 W14×145 19 W14×426  7 W18×40 19 W24×84 

8 W14×159 20 W14×455  8 W16×50 20 W27×94 

9 W14×176 21 W14×500  9 W18×46 21 W27×102 

10 W14×193 22 W14×550  10 W16×57 22 W27×114 

11 W14×211 23 W14×605  11 W18×50 23 W30×108 

12 W14×233 24 W14×665  12 W21×44 24 W30×116 

 

 
Figure 8. Acceleration response spectra 
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This paper utilizes acceleration response spectra corresponding to the seismic hazard 

levels, based on the Iranian seismic design code [24] for soil type III in a region classified as 

having very high seismicity, as illustrated in Fig. 8.  

In addition, details of the modified Ibarra Medina-Krawinkler concentrated plastic hinge 

model for beams and columns can be found in [8].  
 

6.1 6-story SMF 

To train and test the BP and RB-based NN models, a dataset comprising 500 samples is 

randomly generated. The dataset is divided into training and testing datasets, containing 80% 

and 20% of the total data, respectively. For the BP-based NN model, 10 hidden layer 

neurons are considered. The NN models are then trained and tested, with the results reported 

in Tables 3 and 4, in terms of MAPE, RMSE, and R2.  

 

Table 3: Performance evaluation of BP-based NN model for 6-story MRF 

Phase Metric CLIO CLCP CMR 

Training MAPE 0.8031 0.1116 4.3743 

RMSE 0.0089 0.0019 0.1456 

R2 0.9967 0.9757 0.8151 

Testing MAPE 0.9953 0.0988 4.9870 

RMSE 0.0123 0.0014 0.1692 

R2 0.9794 0.9370 0.7310 

 

Table 4: Performance evaluation of RB-based NN model for 6-story MRF 

Phase Metric CLIO CLCP CMR 

Training MAPE 1.8023 0.1488 5.2995 

RMSE 0.0189 0.0019 0.1746 

R2 0.9852 0.9741 0.7343 

Testing MAPE 2.3165 0.2480 6.0146 

RMSE 0.0333 0.0040 0.2034 

R2 0.8499 0.4671 0.6116 

 

The results indicate that the performance of the BP-based NN model is significantly 

better than that of the RB-based model. The MAPE of the predicted 𝐶𝐿𝐼𝑂 by the BP-based 

NN model is 55% lower in the training phase and 57% lower in the testing phase compared 

to the RB-based NN model. Additionally, the MAPE of the predicted 𝐶𝐿𝐶𝑃 by the BP-based 

NN model is 25% lower in the training phase and 60% lower in the testing phase than that of 

the RB-based NN model. Furthermore, for the 𝐶𝑀𝑅, the prediction accuracy of the BP-based 

NN model is 17% better in both the training and testing phases compared to the RB-based 

model. There are similar results for RMSE and R2. 

Fig. 9 displays the regression results for the predicted seismic responses during the 

training and testing phases of the BP-based NN model. Additionally, Fig. 10 shows the 

histogram of PE for 𝐶𝐿𝐼𝑂, 𝐶𝐿𝐶𝑃, and 𝐶𝑀𝑅 highlighting the effective performance of this NN 

model in estimating the seismic responses of 6-story steel MRF. 
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Figure 9. Prediction of 𝐶𝐿𝐼𝑂, 𝐶𝐿𝐶𝑃, and 𝐶𝑀𝑅 of 6-story steel MRF 
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Figure 10. Histogram of PE of 𝐶𝐿𝐼𝑂, 𝐶𝐿𝐶𝑃, and 𝐶𝑀𝑅 for 6-story steel MRF 

 

6.2 12-story SMF 

In this example, a total of 1000 samples are randomly generated. Out of these, 800 samples 

are utilized for training, while the remaining 200 samples are allocated for testing. For the 

BP-based NN model, 10 hidden layer neurons are used. Tables 5 and 6 present the results.  

 

Table 5: Performance evaluation of BP-based NN model for 12-story MRF 

Phase Metric CLIO CLCP CMR 

Training MAPE 1.0871 0.3721 2.8948 

RMSE 0.0096 0.0046 0.0633 

R2 0.9933 0.6711 0.7789 

Testing MAPE 1.8648 0.4051 3.8906 

RMSE 0.0163 0.0050 0.0868 

R2 0.9807 0.6472 0.5877 

 

Table 6: Performance evaluation of RB-based NN model for 12-story MRF 

Phase Metric CLIO CLCP CMR 

Training MAPE 3.5432 0.4136 3.3563 

RMSE 0.0295 0.0051 0.0733 

R2 0.9381 0.6105 0.7039 

Testing MAPE 3.8022 0.4654 4.4509 

RMSE 0.0321 0.0055 0.0987 

R2 0.9260 0.5721 0.4673 

 

The results indicate that the performance of the BP-based NN model is significantly 

better than that of the RB-based model. The MAPE of the predicted 𝐶𝐿𝐼𝑂 by the BP-based 

NN model is 69% lower in the training phase and 51% lower in the testing phase compared 

to the RB-based NN model. Additionally, the MAPE of the predicted 𝐶𝐿𝐶𝑃 by the BP-based 

NN model is 10% lower in the training phase and 13% lower in the testing phase than that of 

the RB-based NN model. Furthermore, for the 𝐶𝑀𝑅, the prediction accuracy of the BP-based 

NN model is about 13% better in both the training and testing phases compared to the RB-

based model. There are similar results for RMSE and R2. 
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Figure 11. Prediction of 𝐶𝐿𝐼𝑂, 𝐶𝐿𝐶𝑃, and 𝐶𝑀𝑅 of 12-story steel MRF 
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Figure 12. Histogram of PE of 𝐶𝐿𝐼𝑂, 𝐶𝐿𝐶𝑃, and 𝐶𝑀𝑅 for 12-story steel MRF 

 

Fig. 11 displays the regression results for the predicted seismic responses during the 

training and testing phases of the BP-based NN model. Additionally, Fig. 12 shows the 

histogram of PE for 𝐶𝐿𝐼𝑂, 𝐶𝐿𝐶𝑃, and 𝐶𝑀𝑅 highlighting the effective performance of this NN 

model in estimating the seismic responses of 12-story steel MRF. 
 

 

7. CONCLUSIONS 
 

The computational cost associated with evaluating the seismic responses of structures 

through nonlinear pushover analysis is significant. Consequently, this paper focuses on 

employing neural network (NN) models to estimate the seismic confidence levels at both 

immediate occupancy and collapse prevention performance levels, in addition to predicting 

the seismic collapse margin ratio for steel moment-resisting frame structures. Two specific 

models are utilized for this purpose: a back-propagation (BP) based neural network model 

and a radial basis (RB) based neural network model. These models aim to enhance the 

prediction accuracy of the seismic responses of steel frames. 

Two numerical examples of 6-story and 12-story steel MRFs are used, with datasets 

containing 500 and 1000 samples, respectively, being randomly generated for each example. 

Both BP-based and RB-based NN models are trained and tested using these datasets. The 

results obtained from this study indicate that the BP-based NN model significantly 

outperforms the RB-based NN model in estimating seismic confidence levels at both 

immediate occupancy and collapse prevention performance levels. Additionally, the BP-

based model demonstrated superior accuracy in predicting the seismic collapse margin ratio. 

The BP-based NN model can be effectively incorporated into a performance-based design 

optimization process to thoroughly explore the design space. It allows for a thorough 

exploration of the design space while maintaining reasonable computational costs.  
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