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ABSTRACT 
 

Tower cranes are essential for both vertical and horizontal movement of materials in 

construction and port operations. Optimizing their placement is crucial for reducing costs and 

enhancing overall efficiency. This study addresses the optimization of tower crane placement 

using the recently developed Mouth Brooding Fish (MBF) algorithm. The MBF algorithm is 

inspired by the life cycle of mouth-brooding fish, employing their behavioral patterns and the 

survival challenges of their offspring to find optimal solutions. The performance of the MBF 

algorithm is compared with the Genetic Algorithm (GA), Colliding Bodies Optimization 

(CBO), and Enhanced Colliding Bodies Optimization (ECBO). The results demonstrate that 

the MBF algorithm is effective and has potential advantages in tackling complex optimization 

problems. 
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1. INTRODUCTION 
 

In the last few decades, a significant amount of research has been dedicated to finding the 

most efficient solution for construction engineering optimization problems (CEOPs). CSLPs 

are fascinating CEOPs as they incorporate layout esthetics and usability qualities in facility 
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design. Tower cranes are used in building construction to move heavy materials. Transporting 

materials is a key task in construction, involving precise planning for lifting heavy loads of 

cranes [1]. Adequate space for temporary facilities is necessary for safe and efficient 

construction projects. 

CSLP is recognized as an 'NP-hard' problem due to its complexity [2]. Recent 

advancements in meta-heuristic algorithms based on swarm intelligence have proven effective 

in solving such optimization challenges  [3-5], prompting researchers to apply these modern 

techniques to CSLP models.  

Creating a layout for on-site facilities is a crucial part of construction site planning. 

Designing construction site spaces for safe and efficient work is a complex task that requires 

considering various scenarios. Combinatorial optimization problems are referred to as CSLPs. 

Two approaches exist for solving large problems: meta-heuristics and exact methods with 

global search [6]. Using meta-heuristic algorithms to solve real-life problems has become a 

fascinating subject in recent years. Many meta-heuristics, each with unique philosophy and 

characteristics, are developed and used in various domains. These optimization methods aim 

to explore the search space and discover global or near-global solutions. Because of their 

problem-independent nature and lack of derivative requirement, these algorithms have gained 

attention from both academia and industry [7]. Meta-heuristic methods imitate natural, human, 

or physical phenomena for global optimization. such as CBO and MBF) [8-11]. Meta-heuristic 

optimization methods rely on both exploitation and exploration. Exploitation serves to search 

around the current best solutions and select the best possible points, and exploration allows 

the optimizer to explore the search space more efficiently, often by randomization [7]. 

Previously, Li and Love [7] addressed a construction site-level facility layout problem by 

allocating facilities to a set of predefined locations. They approached the problem using a 

genetic algorithm, based on the assumption that these predefined locations are rectangular and 

sufficiently large to accommodate the largest facilities. Gharaie et al. [6] tackled their model 

with Ant Colony Optimization, while Kaveh et al. [12] employed Colliding Bodies 

Optimization along with its improved version. In a similar vein, Cheung et al. [13] proposed 

another model for construction site layout planning and resolved it using a Genetic Algorithm. 

Furthermore, Liang and Chao, Wong et al., and Kaveh et al. [14] applied Multi-search Tabu 

Search, Mixed Integer Programming, and CBO, ECBO, and PSO methods, respectively. 

Jahani and Chizari (2018) proposed the Mouth Brooding Fish (MBF) algorithm as a novel 

meta-heuristic. The answer is found by studying the life cycle of mouthbrooding fish and their 

struggle for survival. 

 

 

2. MOUTH BROODING FISH ALGORITHM 
 

Optimization algorithms are employed to optimize objective functions within specific 

constraints. The algorithms can be categorized into the penalty function approach that has 

been used for handling the constraints. Problems can be considered multi-objective and single-

objective types.  Multi-objective is typically involved in the majority of optimization 

problems. but for simplification, we have considered this problem as single-objective. The 

problem of single-objective optimization can be expressed in the following manner: 
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find 

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛] 
 

to minimize 

𝑀𝑒𝑟(𝑋) 

 

subjected to 

𝑔𝑗(𝑋) <  0, 𝑗 = 1,2, … , 𝑚 

𝑥𝑖𝑚𝑖𝑛
 <  𝑥𝑖  < 𝑥𝑖𝑚𝑎𝑥

 

 

(1) 

 

where X represents the vector of all design variables with n unknowns. 

The objective function is represented by Mer(X). ximin represents the lower bound of the 

design variable vector, while ximax represents the upper bound. The objective function that 

needs to be minimized is defined as the merit (or pseudo-objective) function in Eq. 2. 

 

𝑀𝑒𝑟(𝑋) =  𝐹(𝑋) ×  𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑋) =  𝐹(𝑋) × (1 + 𝐾) 

𝐾 = max(0, 𝑔𝑋) 
(2) 

       

where Mer(X) is the merit function, F(X) is the objective function, K is the penalty 

parameter, and fpenalty(X) is the penalty function. 

 

The life cycle processes of the mouthbrooding fish (MBF) have served as inspiration for 

the MBF algorithm. The user determines the five controlling parameters of this algorithm. The 

variables include the mother’s source point (SP), mother’s source point damping (Spdamp), 

dispersion amount (Dis), dispersion probability (Pdis), and cichlid population (nFish). How 

cichlids encircle their mother forms the crucial foundation of an MBF algorithm. Figure 1 

illustrates the flowchart of this algorithm, with the steps listed below. 

• Main movements 

• Additional movements 

• Crossover 

• Shark attack 

 

2.1. The main movements. 

The primary motions are determined in the following manner: 

 

𝐴𝑠𝑝 =  𝑆𝑃 × 𝐶𝑖𝑐ℎ𝑙𝑖𝑑𝑠 ∙ 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 (3) 

 

SP is the origin point of the mother, while Cichlids . Movements represent their final 

movements. 

𝑆𝑃 =  𝑆𝑃 × 𝑆𝑝𝑑𝑎𝑚𝑝 (4) 

 

Spdamp represents the mother’s source point damp, which ranges from 0.85 to 0.95, while 

SP denotes the mother’s changing source point for the next iteration. 
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𝐴𝑙𝑏  =  𝐷𝑖𝑠 × (𝐶𝑖𝑐ℎ𝑙𝑖𝑑𝑠 ∙  𝐵𝑒𝑠𝑡 −  𝐶𝑖𝑐ℎ𝑙𝑖𝑑𝑠 ∙  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) (5) 

 

The current position of Cichlids is at Position and their best position is at the best. The user 

selects dis to either amplify or diminish the impact of this motion. 

 
𝐴𝑔𝑏  =  𝐷𝑖𝑠 × (𝐺𝑙𝑜𝑏𝑎𝑙 ∙  𝐵𝑒𝑠𝑡 −  𝐶𝑖𝑐ℎ𝑙𝑖𝑑𝑠 ∙  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) (6) 

 

The best position found for all cichlids in previous iterations is at Global . Best. 

 
𝑁𝑒𝑤𝑁. 𝐹. 𝑃 =  10 × 𝑆𝑃 × 𝑁𝑎𝑡𝑢𝑟𝑒𝑓𝑜𝑟𝑐𝑒 ∙  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (7) 

 

Nature Force. Position is the cell that is chosen from 60% of the cells with the greatest 

difference in position between the last and current generation. 

 
𝐴𝑛𝑓  =  𝐷𝑖𝑠 × (𝑁𝑒𝑤 𝑁 ∙ 𝐹 ∙ 𝑃 –  𝑁𝑎𝑡𝑢𝑟𝑒 𝐹𝑜𝑟𝑐𝑒 ∙  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) (8) 

 

The best position for cichlids in the last iteration is Nature Force.  Position. 

Each child can only move within the range of surrounding dispersion, either positive or 

negative. 

The two parameters described earlier are designated as: 

 
𝐴𝑆𝐷𝑃 =  0.1 ×  (𝑉𝑎𝑟𝑀𝑎𝑥 –  𝑉𝑎𝑟𝑀𝑖𝑛) 

𝐴𝑆𝐷𝑁 =  −𝐴𝑆𝐷𝑃 
(9) 

    

The variables VarMin and VarMax represent the minimum and maximum limits of the 

problem’s variation. 

Following that, we determine a fresh location for cichlids, taking into account their 

calculated movements. If their current position is outside the search space area, a new 

movement is generated through the mirror effect (i.e., by reversing the movement direction), 

and it follows this definition: 

 
𝐶𝑖𝑐ℎ𝑙𝑖𝑑𝑠 ∙ 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 =  − 𝐶𝑖𝑐ℎ𝑙𝑖𝑑𝑠 ∙ 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 (10) 

 

Cichlids . Movements explore the before and after effects of mirror reflections on cichlids. 

 

2.2 The additional movements 

The mother can house numerous cichlids, while the rest are known as left-out cichlids and 

the calculation for the number of neglected cichlids (nm) is as follows: 

 

𝑛𝑚 =  0.04 × 𝑛𝐹𝑖𝑠ℎ ×  𝑆𝑃−0.431 (11) 

 

In order to survive, these cichlids must move away from the main group using a controlling 

parameter (Pdis) between 0 and 1. The calculation for the number of remaining cichlids is 

determined by Eq. (12). 
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𝑁𝐶𝐶 =  [𝑛𝑉𝑎𝑟 ×  𝑃𝑑𝑖𝑠] (12) 

 

The second part of a movement is performed by neglected cichlids. 

 
𝑈𝐴𝑆𝐷𝑃 =  4 × 𝐴𝑆𝐷𝑃 ∙  𝑈𝐴𝑆𝐷𝑁 =  −𝑈𝐴𝑆𝐷𝑃  (13) 

 

UASDN and UASDP represent the extreme boundaries for the dispersion of cichlid 

movements. 

 

To calculate the second part of the movement, follow these steps: 

 
𝐿𝑒𝑓𝑡𝐶𝑖𝑐ℎ𝑙𝑖𝑑𝑠 ∙  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑈𝐴𝑆𝐷𝑃 ±  𝐶𝑖𝑐ℎ𝑙𝑖𝑑𝑠 ∙  𝑃 (14) 

 

Left Cichlids . Position represents the new position of cichlids left out after the second part 

of movements, while Cichlids . Prefers to randomly selected cells of cichlids based on the 

number of NCC. 

 

2.3 Crossover 

The mouth-brooding fish permits its top cichlids to mate. The single point crossover 

generates the new fish using a 65 percent probability from the better parent and 35 percent 

from another parent. The newly hatched cichlids, in their new role, replace their parents and 

remain stationary. 

 

2.4 Shark attack 

The calculation of the number of cichlids affected by shark attacks is as follows: 

 
𝑛𝑠ℎ𝑎𝑟𝑘 =  0.04 ×  𝑛𝐹𝑖𝑠ℎ (15) 

 

In this equation, nshark represents the number of cichlids involved in the shark attack 

effect. Shark attack affects 4 percent of the cichlids population on position and movements as 

follows: 

 
𝐶𝑖𝑐ℎ𝑙𝑖𝑑𝑠 ∙  𝑁𝑒𝑤𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑆ℎ𝑎𝑟𝑘𝐴𝑡𝑡𝑎𝑐𝑘 ×  𝐶𝑖𝑐ℎ𝑙𝑖𝑑𝑠 (16) 

 

Cichlids . Position randomly selects cichlids from a 4 percent population, while 

SharkAttack tracks the number of cichlids and their frequency of change. [15] 
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Figure 1: The algorithm for mouth-brooding fish (MBF) is presented in a flowchart. [15] 
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3. OPTIMIZATION OF TOWER CRANE LOCATION AND MATERIAL 

SUPPLY POINTS 
MATERIAL SUPPLY POINTS 

Numerous studies have investigated the time it takes to locate and transport a tower crane. 

For instance, Choi and Harris [12] enhanced a mathematical model to determine the optimal 

location for a tower crane. Huang et al. [13] created a mixed integer linear programming 

(MILP) to optimize crane and supply locations. Their model reduced hook travel time by 7% 

compared to previous genetic algorithm results. The equation can be used to calculate the 

travel distance between the supply and demand points. (8) through Eq. (9) referring to Figs. 5 

and 6. 

 

 
⎯ The rib of the crane 

---- Angular movement path of the rib of the crane (tangent movement) 
o Hook position 

← Change of hook position (radial movement) 

• Crane position 

Figure 2: Radial and tangent movements of the 

 
Figure 3. Vertical movement of the hook [14] 
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𝜌 (𝐷, 𝐶𝑟)  =  √(𝑋𝐷 − 𝑋𝐶)2 + (𝑌𝐷 − 𝑌𝐶)2 (17) 

𝜌 (𝑆, 𝐶𝑟)  = √(𝑋𝑆 − 𝑋𝐶)2 + (𝑌𝑆 − 𝑌𝐶)2 (18) 

𝐿 = √(𝑋𝑆 − 𝑋𝐷)2 + (𝑌𝑆 − 𝑌𝐷)2 (19) 

𝑇𝑎 =
|𝜌𝐷 − 𝜌𝑆|

𝑉𝑎
 (20) 

𝑇𝜔 =
1

𝑉𝜔
 𝑎𝑟𝑐𝑐𝑜𝑠 [

𝐿2+𝜌𝐷
2 +𝜌𝑆

2

2×𝜌𝐷×𝜌𝑆
] , [0 < 𝑎𝑟𝑐𝑐𝑜𝑠 (Ɵ)   <  л ] (21) 

 

Evaluating the total time of material transportation with a tower crane relies on hook 

movement time. To reflect operating costs accurately, the hook movement time has been 

divided into horizontal and vertical paths with a suitable cost-time factor. Figures display 

movement paths in different directions. 2 and 3. A continuous type parameter α indicates the 

degree of coordination of the hook movement in radial and tangential directions which 

depends on the control skills of a tower crane operator, times for horizontal and vertical hook 

movements can be calculated in Eqs. The ages of (22) and (23) are in that order. 

 
                                    𝑇ℎ =  𝑚𝑎𝑥{𝑇𝑎  +  𝑇𝜔}  +  𝛼 ×  𝑚𝑖𝑛 {𝑇𝑎  +  𝑇𝜔 } (22) 

𝑇𝑣

|𝐷𝐷 −  𝐷𝑆|

𝑉ℎ
 (23) 

 

The total travel time of the tower crane at location k between supply point i and demand 

point j, 𝑇𝑖�̇�
𝐾, can be determined using Eq. (24) by specifying the continuous type parameter ß 

for the degree of coordination of hook movement in horizontal and vertical planes. The 

movement of the tower crane and hook operation may be affected by various factors, such as 

site conditions, operator skills, and visibility level, resulting in reduced efficiency and longer 

operating time [12]. If the operator’s line of sight is blocked, then the travel time from the 

supply location to the demand point needs to be increased. To address these challenges in site 

operation, we introduce a new numerical parameter ƴk to enhance the original factor. 

The travel times of the tower crane and hook are provided in Eq. (24). Various ƴk can be 

utilized for distinct tower crane positions k in order to assess location-specific impacts on a 

construction site. Installing an advanced vision system in tower cranes can speed up operations 

and allow for a smaller ƴk setting [13]. 

 

 𝑇𝑖�̇�
𝐾 =  ƛ𝑘 𝑋 [𝑚𝑎𝑥{𝑇ℎ  + 𝑇𝑣}  +  𝛽. 𝑚𝑖𝑛 {𝑇ℎ  + 𝑇𝑣}] (24) 

 

Three scenarios were presented by Huang et al. [6] to showcase the adaptability of their 

MILP model for tower crane placement. The formulation will be expanded to include 

homogeneous and non-homogeneous storage supply points, allowing for different materials 

to be stored using different strategies by adding additional linear governing constraints. 

A single tower crane can be modeled and assigned to any available location. For a given 
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location k, binary variables like ζk are defined. ζk equals 1 if the location k is chosen for a 

tower crane, or 0 if it is not selected. The optimization framework mandates selecting the best 

tower crane location due to the requirement of constraint as in Fig. (25). 

 

𝛴𝑘=1
𝑘    𝜁𝑘  =  1,    ∀𝐾 ∈ {1, 𝑘} (25) 

 

The introduction of binary variables Δj signifies the presence of a potential demand point 

at each demand location. Depending on the input material demand profile QI.j for material 

type l, constraint set (26) is required to ensure the binary variable Δj to be “1” if there is a 

demand at location j and “0” if the demand does not exist. M represents a large whole number 

without any specific value. 

 

𝑀𝛥𝑗 ≥  𝛴𝐼=1
𝐿   𝑄𝐼.𝑗 >  𝛥𝑗 ,  ∀𝑗   ∈ {1, 𝐽} (26) 

 

3.1 Homogeneous material supply point 
As a management problem, it is worth examining the total cost of transporting all the 

required materials to demand points through a tower crane if the materials can be stored and 

supplied in more than one location without setting a storage limit on various supply locations 

realizing that the supply locations have infinite material storage capacity, which is always the 

case in large-scale construction sites. In a homogeneous material supply system, each supply 

point has a temporary storage area limited to one material type. During optimization, it is 

crucial to allocate only one material type per supply location. Constraint sets (27) and (28) 

define and regulate a set of binary decision variables Xi,l mathematically. In the equation. 

(27), for each material type l = {1,L} , where L is the total number of material types to be 

,considered, there must be one assigned supply location within a site. For each supply location 

i = {1,I}, where I is the total number of available supply points in a site capable of storing the 

construction material, only one material type can be assigned, as indicated in Eq. (28). 

 

𝛴𝑖=1
𝐼  𝑋𝑖,𝑙 = 1, ∀𝑙 ∈ {1, 𝐿} (27) 

𝛴𝑙=1
𝐿  𝑋𝑖,𝑙 ≤ 1, ∀𝑖 ∈ {1, 𝐼} (28) 

  

The objective function is the total cost of material transportation, which is influenced by 

the amount of material flowing between supply and demand locations. We define a set of 

auxiliary binary variables 𝛿i,j,k,l to represent material flows. These variables are equal to “1” 

if material type l at supply point i is transported by a tower crane at location k to demand point 

j, and “0” otherwise [16]. 

The decision variables Xi,l represent the linkage between material l and supply location i, 

Δj represent demand location j, and ζk represents the selection of the tower crane kth location, 

all with the constraint set (1). Numerically, when all Xi,l, Δj, and ζk are set to 1, the material 
flow linkage is confirmed by 𝛿i,j,k,l = 1. For all other cases, 𝛿i,j,k,l equals 1 to exclude 

transportation costs from the objective function. 
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𝑀(1 − 𝛿𝑖,𝑗,𝑘,𝑙) ≥ (3 −  𝑋𝑖,𝑙 − ∆𝑗 − 𝜉𝑘) ≥ (1 − 𝛿𝑖,𝑗,𝑘,𝑙), ∀𝑖 ∈ {1, 𝐼}, ∀𝑗 ∈ {1, 𝐽},

∀𝑘 ∈ {1, 𝐾}, ∀𝑙 ∈ {1, 𝐿} 
(29) 

 

With the use of the auxiliary variable 𝛿i,j,k,l to represent material flows, the equation can be 

used to calculate the overall cost of material transportation by a tower crane from different 

supply points to demand points. (30) that can be set as an objective function for optimization 

in the present formulation. The total cost TCh is defined as the sum of transportation costs 

between supply and demand locations by a tower crane at location k using material flow 

variables 𝛿i,j,k,l  for a homogenous material supply system. In the equation. (30), Ql,j is the 

required quantity of material l at demand point j, C is the cost per unit time in operating a 

tower crane, and 𝑇𝑖,𝑗
𝑘  is the actual transport time between supply location i and demand location 

j by a tower crane at location k. The current formulation can be optimized by evaluating and 

setting the total cost as an objective function. 

 

𝑇𝐶ℎ = 𝛴𝑖=1
𝐼  𝛴𝑗=1

𝐽  𝛴𝑙=1
𝐿  𝛿𝑖,𝑗,𝑘,𝑙𝑇𝑖.𝑗

𝑘  𝑄1,𝑗 𝐶, ∀𝑘 ∈ {1, 𝐾} (30) 

 

The tower crane position in a homogeneous material supply system can be optimized by 

formulating the objective function in Eq. (28) subject to constraint sets in Eqs. (17) to (29). 

 

 

4. NUMERICAL EXAMPLES 
 

Previous studies used case studies to assess the effectiveness and performance of Huang et al. 

[6], addressed by Mbf. Within a site that has 12 potential tower crane locations, the material 

supply and demand system consists of 3 material types, 9 supply locations, and 9 demand 

locations. The hoisting velocity of the hook is 60 m/min, radial velocity is 53.3 m/min, and 

the sewing velocity of the tower crane branch is 7.57 rad/min. With the assumed operating 

cost per unit of time at $1.92 per minute, the tower crane has material demand quantities of 

10 units for material type 1, 20 units for material type 2, and 30 units for material type 3 at all 

demand points. Demonstrating the coordination of hook movement in vertical and horizontal 

planes during practical operation is the parameter β, which is set at 0.25. The coordination of 

hook movement in radial and tangential directions in the horizontal plane is specified by the 

parameter α, assumed to be 1.0 [17]. To show, all γk values are set to 1.0, assuming no 

significant differences among the locations for the tower crane operation. Table 1 provides the 

(x, y, z) coordinates for the demand points, material supply points, and tower crane locations. 

 

 

5. RESULTS AND DISCUSSION 
 

Each scenario was tested through 30 independent experimental runs over 300 iterations in this 

study. The MBF optimization method in PYCHARM 2023.1 resolved the problem. To 

optimize the algorithm’s performance, multiple experiments were conducted to determine the 

control parameters for MBF. 
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Table 1: Coordinates of the potential locations 

 1 2 3 4 5 6 7 8 9 10 11 12 

Demand 

point j 

X 34 34 51 60 76 76 60 51 43    

Y 41 51 65 65 51 41 26 25 44    

Z 15 15 15 15 15 15 15 15 15    

Supply 

point i 

X 73 83 87 73 55 35 22 36 55    

Y 26 31 45 67 73 67 46 27 15    

Z 2 2 1.5 1.5 1.5 0 0 1 1    

Tower 

crane 

position, k 

X 45 65 65 45 51 60 70 70 60 51 42 42 

Y 36 36 57 57 33 33 41 52 58 58 52 41 

Z 30 30 30 30 30 30 30 30 30 30 30 30 

 

5.1 Results and discussion for homogeneous material supply point scenario 

Table 2 presents the previous research findings, which include optimized total costs, 

suitable supply point locations for demand points, and tower crane locations. Comparing these 

results, the method employed in this study achieves 4% higher than the results obtained by 

CBO, ECBO, VPS, and MILP approaches, and 3% lower than that obtained by the GA 

method. 

Table 2 shows that tower crane number 5 is positioned in relation to supply and demand 

points. The supply points are allocated to the demand points as [2, 2, 3], meaning that demand 

points 1 and 2 are served by supply point 2, and demand point 3 is served by supply point 3., 

the best calculated cost for these allocations is 527.5537, with a standard deviation of zero, 

showing that the mean cost and best cost are identical. 

 

Table 2: Comparison of the optimized design for the homogeneous material supply point 

Method Tower 

crane, k 

Order of allocation of 

supply points to material 

type 

Best cost Mean 

cost 

Standard 

deviation 

Worst 

cost 

1 2 3 

GA (9) 2 3 2 9 540.7587 N/A N/A N/A 

MILP (1) 8 2 5 1 504.7631 N/A N/A N/A 

CBO 8 2 5 1 504.7631 505.9426 1.3319 508.2809 

ECBO 8 2 5 1 504.7631 504.8804 0.6423 508.2809 

VPS 8 2 5 1 504.7631 504.8383 0.4121 507.0204 

MBF 5 2 2 3 527.5537 527.5537 0.0000 527.5537 

Note: N/A: Not available 

 

 

6. CONCLUSIONS 
This study achieved significant success in optimizing material transportation costs using the 

MBF method, reporting a cost efficiency of 527.55. The results indicate that MBF has greater 

potential for improvement compared to methods like MILP (with a best cost of 504.7631) 

under specific conditions and additional constraints, such as real-world site conditions and 
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various crane designs. While MBF shows promising capabilities, other algorithms like CBO 

and ECBO also delivered notable results, with ECBO providing more stable solutions than 

VPS and both outperforming CBO. However, in scenarios with non-homogeneous material 

supply, MBF did not reach the optimality level of MILP, indicating the need for further 

optimizations. Overall, MBF can be particularly effective in complex operational contexts and 

diverse design scenarios. 
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