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ABSTRACT 
 

Opposition-based learning was first introduced as a solution for machine learning; however, 
it is being extended to other artificial intelligence and soft computing fields including meta-
heuristic optimization. It not only utilizes an estimate of a solution but also enters its 
counter-part information into the search process. The present work applies such an approach 
to Colliding Bodies Optimization as a powerful meta-heuristic with several engineering 
applications. Special combination of static and dynamic opposition-based operators are 
hybridized with CBO so that its performance is enhanced. The proposed OCBO is validated 
in a variety of benchmark test functions in addition to structural optimization and optimal 
clustering. According to the results, the proposed method of opposition-based learning has 
been quite effective in performance enhancement of parameter-less colliding bodies 
optimization. 
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1. INTRODUCTION 
 
Application of meta-heuristic algorithms is growing fast for engineering problems. These 
methods can be categorized into bio-inspired, physics-inspired, cultural and chemical-
inspired algorithms [1]. They are desired choices for dealing with discontinuous, 
multimodal, non-smooth and non-convex functions. Some of the popular meta-heuristics are 
Harmony Search [2, 3], Opposition-Switching Search [4], Charged System Search [5], 
Pseudo-random Directional Search [6], Tug of War Optimization [7], Colliding Bodies 
Optimization [8, 9], Water Evaporation Optimization [10], Observer-Teacher-Learner-Based 
Optimization [11], Stochastic Directional Search [12] and Vibrating Particles Search [13] 
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among several others. Every such algorithm applies its own operators to exploite memory or 
explore the design space [14].  

The concept of Opposition-Based Learning (OBL) was introduced by Tizhoosh at 
2005 [15]. According to OBL, for every candidate solution X , its opposite .OppX  is 
simultaneously considered as an extra search point to capture the problem optimum. In 

another word, OBL theory indicates that taking into account both iX and .Opp
iX  reveals 

better approximation of the problem solution than just trusting on iX . OBL has already been 

applied to a number of meta-heuristics including Differential Evolution [16], Harmony 
Search [17], Gravitational Search Algorithm [18] and Opposition-Switching Search [4]. 

A variety of definitions for the opposite of solution and implementation strategies can be 
found in literature for applying OBL to the search algorithms [19]. According to a common 
impelemenation strategy, the selection pool in every iteration is extended to include not only 
the main population of agents but also their opposite solutions. In such a case, quality 
enhancement of the resulted optimum is preserved or even mathematically proven, however, 
the strategy doubles the required number of fitness calls in every iteration.  

 In this paper, a more efficient OBL strategy is offered to accelerate the convergence rate 
of Colliding Bodies Optimization. The proposed Opposition-based Colliding Bodies 
Optimization, OCBO, utilizes two types of OBL; i.e. static and dynamic opposition of 
colliding bodies. The rest of this paper is organized as follows: CBO basics are reviewed in 
Section 2. In Section 3, the concept of OBL is briefly explained and the proposed algorithm 
is presented in Section 4. A comprehensive set of experimental results for unconstrained and 
constrained problems are provided in Sections 4 and 5. Concluding remarks are finally 
discussed in Section 6.  

 
 

2. COLLIDING BODIES OPTIMIZATION 

 
2.1 Collision principals 

Collision between bodies are governed by the laws of momentum and energy. When a 
collision occurs in an isolated system, the total momentum is conserved; i.e. momentum of 
all the system objects remains constant before and after the collision provided that there are 
no net external forces acting upon them. Conservation of the total momentum for two 
colliding bodies can be expressed by the following equation: 

 
' '

1 1 2 2 1 1 2 2m v m v m v m v    (1)

 
Conservation of the total kinetic energy is expressed as: 
 

2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 1

2 2 2 2
m v m v m v m v Q      (2)

 

where 1v  and 2v  are the initial velocities of the first and the second objects before impact, 
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respectively. After impact '
1v  denotes final velocity of the first object and '

2v  stands for final 

velocity of the second object. Masses of the first and the second objects are denoted by 1m

and 2m , respectively. The term Q stands for the kinetic energy loss due to the impact [8]. 

Consequent velocities after one-dimensional collision are calculated by: 
 

   1 2 1 2 2 2'
1

1 2

m m v m m v
v

m m

   



 (3)

   '

1

2 1 2 1 1 1

2
2

m m v m m v
v

m m

   



(4)

 
where  ; stands for the Coefficient Of Restitution (COR) between two colliding bodies. 
It is defined as the ratio relative velocity of separation over the relative velocity of 
approach: 
 

' '
2 1

2 1

v v v

v v v
 





  (5)

 
Such a coefficient of restitution  varies between 0 and 1 as the collision state varies 

between the following conditions: 
(1) Perfect elastic collision; in which there is no loss of kinetic energy i.e. Q=0 and thus

1  . 
(2) Perfect inelastic collision; that occurs when two bodies does not get farther from 

each other after they collide. It means their relative velocity and consequently the 
coefficient of restitution equals zero. 
 

2.2 Colliding bodies optimization  

Colliding Bodies Optimization (CBO) is first introduced by Kaveh and Mahdavi [8] and 
already applied to many engineering problems [9]. According to CBO terminology, each 
candidate solution vector iX  is considered as a Colliding Body, CB. Such CB’s consitiute 

the population of search agents which is subdivided into two groups; i.e. stationary and 
moving CB’s. Every moving object moves toward and collide with the corresponding 
stationary body according to the CBO process. It is done for two purposes: (i) to improve the 
positions of moving objects and (ii) to push stationary objects towards better positions. 
Positions of colliding bodies are updated using their new velocities after the collision. 
Algorithmic steps of CBO can be briefed as follows: 
1. Initiation: Randomly generate positions of n

 
colliding bodies as the initial population 

by: 
 

    ,                1, 2, ,L U L
iX X rand X X i n      (6)
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LX  and UX  denote lower and upper bounds on the design vector, repectively. rand is a 

random vector uniformly distributed in the range [0, 1] and the sign  "  " denotes the 

element-by-element multiplication. Mass of every ith colliding body (CB) is also defined as: 
 

1

      1
( )

, ,
)

2
(

,i

i

i n

i

m i
F

n
X

F X


  


 (7)

 
where ( )iF X  represents fitness extracted out of the cost function ( )if X , for the ith 

solution vector, iX . It is assumed that a CB with good value has a larger mass than bad 

CB’s.  
2. Sort CB’s in ascending order of their cost function values. Then subdivide the 

population into the following groups: 
 Stationary CB’s: the lower half of the sorted population. The velocity of every 

stationary CB before collision is initiated by zero: 
 

 0    ,     1, ,
2i

n
V i    (8)

 
 The upper half include moving CB’s; i.e. those which move toward the stationary 

ones. Therefore, velocity of every moving CB before collision is given by: 
 

 

2

     ,     1, ,
2i i n

i

n
V X X i n


      (9)

 
in which  

2

   n
i

X


 
represent the CB moving toward the corresponding ith stationary CB. 

3. The velocity of every moving CB after the collision;
 

 '  iV  is obtained by: 

 

2'
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2

i n i
i
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i n
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 (10)

 
where   im  and 

2

 n
i

m


 are masses of stationary and moving CB’s, respectively. In addition, 

velocity of the corresponding stationary CB after the collision will be: 
 

2 2 2
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In order to provide a balance between exploration and exploitation the COR is linearly 
decreased from unity to zero. Thus,   is given by: 

 

1
I

k

N
    (12)

 
where  k and  IN represent the current and total number of iterations, respectively. 

4. New positions of CBs are evaluated using the velocities generated after the collision in 
position of stationary CBs. The new positions of each moving CB is: 
 

'

-
2

     ,  1, ,   
2

new
i n i

i

n
x x rand v i n       (13)

 

where new
ix  and '

iv are the new position and the velocity after the collision of the ith moving 

CB, respectively; 
-
2

n
i

X  is the old position of ith stationary CB pair. Also, the new positions 

of stationary CBs are obtained by: 
 

'
     ,  1, ,   

2
new
i i i

n
x x rand v i      (14)

 

where new
ix , ix  and '

 iv  are the new position, old position and the velocity after the collision 

of the ith stationary CB, respectively.  
5. The optimization is repeated from Step 2 after mass update until the iteration number 

reaches  IN . It should be noted that, a body’s status (stationary or moving body) and its 

numbering may be changed in any two subsequent iterations. 
MATLAB codes for CBO and the enhanced version of it has already been given by 

Kaveh and Ilchi-Ghazaan [20].  
 
 

3. OPPOSITION-BASED COLLIDING BODIES OPTIMIZATION 
 
Several meta-heuristic algorithms initiate with a population of solution candidates and 
improve their best solution during the search until the optimum is captured. Such a process 
terminates as soon as some predefined criteria are satisfied. In the absence of a priori 
information about the solution, we usually start with random initial population. The 
computation time, among the others, is related to the distance of such an initial guess from 
the optimal solution. The closer this guess is to the global optimum, the quicker convergence 
of the algorithm and the higher quality of final solution is excpected.  

One can improve the chance of starting with a closer (fitter) solution by simultaneously 
checking the opposite solution [15]. This way, the fitter one (an individual or its opposite) 
can be chosen for further progress. By almost equal likelihood it is expected that a search 
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agent is farther from the true solution than its opposite and vice versa [21]. Therefore, taking 
into account the fittest of these opposite agents, will potentially accelerate the convergence. 
The approach can be applied not only to initial population but also to every solution arising 
during the search. The mathematical definition of OBL can be addressed as follows. 

 
3.1 Opposition - based learning 

Let   F X
 
be a fitness function. It is supposed that solutions with higher fitness values are 

more desired. Let  X
 
be a primary guess and X  is its opposite vector, then in every 

iteration calculate    F X  and  F X . The learning continues with X  if     F X F X  , 

otherwise with X . Such a learning scheme is analogous to replacing the current vector with 
the fitter one of its position and the opposition vector. 
 
3.2 Proposed opposition-based learning in the colliding bodies optimization 

In the present work two types of opposition are utilized called static opposition and dynamic 
opposition. Static opposite of a CB position is obtained as its mirror picture with respect to 
the middle of the prescribed upper and lower bounds. It is mathematically defined by: 
 

S L U CBX X X X    (15)

 

where SX  stands for the static opposite of CBX  as the colliding body.  

In the dynamic opposition the location of mirror point is dynamically altered during 
optimization. In the present study, such a dynamic opposite of any Moving CB is obtained 
by mirroring its position with respect to the corresponding Stationary CB. That is: 

 

2D StationaryCB MovingCBX X X   (16)

 
The aforementioned definitions are employed to develop Opposition-based Colliding 

Bodeis Optimization, OCBO via the following algorithmic steps: 
1. Randomly initiate a population,  Pop  of n  CB’s using Eq. (6). Evaluate fitness and 

mass of all CB’s in  Pop . 
2. Sort  Pop in desceding order of the fitness values. Label the fitter half of  Pop as 

 StationaryPop and the remainder as  MovingPop . 

3. For every CB vector; iX in the  StationaryPop generate a newcomer solution; i nX  by the 

following subroutine and add it to the current  Pop  to obtain  auxiliaryPop : 

a. With the probability of one-fifth, calculate n iX  from the corresponding iX by dynamic 

opposition rule as in Eq. (16). That is: 
 

2
2i n i ni

X X X 
   (17)
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b. Otherwise: 
i. generate S

iX

 
as the static opposite of iX by Eq. (15)  

ii. perform a crossover between iX and S
iX and select i nX  as the fittest one of the resulting 

children  
4. Once  auxiliaryPop  is completed, sort it in desceding order of fitness values. Select the the 

first  
2

n

 
members of this sorted  auxiliaryPop as the starionary CB’s and the second 

2

n
 

vectors as the moving ones. 
5. Update positions of moving and stationary CB’s by Eq. (13) and Eq. (14), respectively.  
6. Iterate the above procedure from step 3 until termination criterion is satisfied; that is the 

iteration number reaches  IN . Then announce the fittest obtained CB as the optimum 

solution *X  with the fitness: *F .  

Fig. 1, shows flowchart of the proposed OCBO algorithm. Note that at any iteration,
 auxiliaryPop is reduced to  Pop with the fixed size of n . Using an elitist strategy the fittest CB 

is saved and updated via iterations of the search. It is worth mentioning that both OCBO and 
CBO have only two control parameters: the population size and the number of iterations. 
Other variants of CBO which have more control parameters are not considered in this study. 

 

 
Figure 1. Flowchart of the proposed OCBO 

 
 

4. UNCONSTRAINED OPTIMIZATION 
 

In order to validate performance of OCBO, a number of test functions are selected from 
literature via four distinct classes [22, 23]: separable unimodal Table 1, non-separable 
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unimodal Table 2, separable multimodal Table 3, and non-separable multimodal Table 4.  
 

Table 1: Unimodal and separable test functions 

Function ID Name Expression Dim Domain  Global minimum 

F1 Sphere  30  0 

F2 Step  30  0 

F3 Quartic  30  0 

 
Table 2: Unimodal and non-separable test functions 

Function ID Name Expression Dim Domain  Global 
minimum 

F4 Schwefel 2.22  30  0 

F5 Schwefel 1.2  30  0 

F6 Schwefel 2.21  30  0 

F7 Rosenbrock 30 0 

 
Table 3: Multimodal and separable test functions 

Function ID Name Expression Dim 
Domain

 
Global 

minimum 

F8 Schwefel  30  -12569.5 

F9 Rastrigin  30  0 

F10 Foxholes  2  1 

F11 Branin 2 0.398 

 
Unimodal test functions have single optimum so they can benchmark the exploitation and 

convergence speed of the algorithm. Multimodal test functions have more than one 
optimum; the best is called global optimum while the rest are called local optima. An 
algorithm should properly balance exploration and exploitation to approximate the global 
optima. In non-separable functions each variable of a function is independent of the other 
variables. Separable functions are generally easier to solve than non-separable functions.  

For all the test functions, a unified problem formulation is applied as: 
 

,
LB UB

x xi i  

  2
1 1
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,

( ) ( )

1,...,L U
i i i

Maximize F X f X

Subject to x x x i N

 

  
 (18)

 

whereas  ixX is the vector of N design variables within the range [ Lx , Ux ]. The cost 

function and fitness function are denoted by ( )f x  and ( )F x , respectively. 
 

Table 4: Multimodal and non-separable test functions 

Function ID Name Expression Dim 
Domain

 
Global 

minimum 

F12 Ackley  30  0 

F13 Griewank  30  0 

F14 Penalized  30  0 

F15 Penalized 2 

 

30 

 

0 

F16 Kowalik 4 0.00031 

F17 
6- Hump 

Camel Back 
2 0.03162 

F18 
GoldStein-

Price 
 

2 

 

3 

F19 Hartman 3 4 -3.86 

F20 Hartman 6 6 -3.32 

F21 Shekel 5 4 -10 

F22 Shekel 7 4 -10 

F23 Shekel 10 4 -10 

,
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After a few trials the control paramters are set to 50n  , 1000IN  . Every such 

function is optimized within 50 independent runs provided that the initial population is kept 
identical for different algorithms in each run. Consequently, statistical results are derived in 
terms of the best, mean and standard deviation.  

 
Table 5: Optimal fitness results for unimodal and separable test functions 

Function ID Statistical Item CBO OCBO 

F1 

Best -1.51002e-13 0 
Mean -1.68668e-10 0 

Standard   
deviation 1.00227e-09 0

F2 

Best 0 0 
Mean -0.1 0 

Standard   
deviation 0.30305 0 

F3 

Best -0.01005 -3.4543e-07 
Mean -0.03688 -2.6266e-05 

Standard   
deviation 0.01438 2.4392e-05 

 
Table 6: Optimal fitness results for unimodal and non-separable test functions 

Function ID Statistical Item CBO OCBO 

F4 

Best -3.13092e-10 0 
Mean -1.48948e-09 0 

Standard   
deviation 1.64468e-09 0 

F5 

Best -1.31271 0
Mean -4.02597 0 

Standard   
deviation 1.94434 0 

F6 

Best -12.39720 0 
Mean -35.88630 0 

Standard   
deviation 10.29710 0 

F7 

Best -10.70481 -25.84623 
Mean -118.17462 -26.22199 

Standard   
deviation 201.26144 0.14224 

 
 



STATIC AND DYNAMIC OPPOSITION-BASED LEARNING … 

 

509

 
F1                F5 

 

 
F9               F23 

Figure 2. Sample convergence trace of F1, F5, F9 and F23 in various classes of test functions 
 

According to the results for unimodal separable test functions in Table 5, it is evident that 
OCBO has outperformed CBO regarding quality of final solutions. Note that the cost values 
less than 1710 are rounded to 0. Table 6 compares the statistical results of the present 
methods for unimodal and non-separable test functions. For F4, F5 and F6, OCBO has been 
superior in terms of the best and mean results. Besides, its standard deviation has been less 
than CBO. Although the best result of CBO has been better in F7, its mean and standard 
deviation is outperformed by OCBO.  

Such a comparison is repeated for multimodal separable functions. According to Table 7, 
OCBO has been the winner for F8, F9 and F10. However for F11, both the present 
algorithms have revealed similar results. 

The results of 50 runs for multimodal and non-separable test functions are given in Table 
8, It can be noticed that except for F18 and F20, OCBO has outperformed CBO. For F18 
both have similar results. Treating F20 function, the mean cost and standard deviation of 
CBO has been better, however, both has obtained the best result. Fig.2 exhibits sample 
convergence trace of the optimization methods in each class of the treated test functions.  
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Table 7: Optimal fitness results for multimodal and separable test functions 

Function ID Statistical Item CBO OCBO 

F8 

Best 5615.77990 5417.67480 
Mean 5369.45720 4227.63440 

Standard   
deviation 216.06371 312.87596 

F9 

Best -18.90422 0 
Mean -37.88798 0 

Standard   
deviation 11.16805 0 

F10 

Best -0.99800 -0.99800 
Mean -3.33772 -3.23043 

Standard   
deviation 2.61819 2.07934 

F11 

Best -0.397889 -0.39789 
Mean -0.39789 -0.39789 

Standard   
deviation 3.36448e-16 3.36448e-16 

 
Table 8: Optimal fitness results for multimodal and non-separable test functions 

Function ID Statistical Item CBO OCBO 

F12 

Best -8.53276e-08 -8.88178e-16 
Mean -0.17404 -8.88178e-16 

Standard
deviation 0.44397 0 

F13 

Best -4.77396e-13 0 
Mean -0.00752 0 

Standard   
deviation 0.01113 0 

F14 

Best -4.75800e-15 -1.12272e-13 
Mean -0.06012 -1.67474e-12 

Standard   
deviation 0.10900 2.26344e-12 

F15 

Best -1.07110e-14 -5.23943e-20 
Mean -0.04876 -0.03183 

Standard   
deviation 0.18447 0.17367 

F16 

Best -0.00068 -0.00032 
Mean -0.00129 -0.00061 

Standard   
deviation 0.00182 0.00012 

F17 

Best 1.031628 1.031628 
Mean 1.031627 1.031628 

Standard   
deviation 6.41006e-06 2.24299e-16 

F18 Best -3 -3 
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Mean -3 -3 
Standard   
deviation 4.28781e-15 4.35625e-15 

F19 

Best 3.86278 3.86278 
Mean 3.86278 3.86278 

Standard   
deviation 3.14018e-15 3.14018e-15 

F20 

Best 3.32237 3.32237 
Mean 3.32237 3.27325 

Standard    
deviation 1.34579e-15 0.05868 

F21 

Best 10.15320 10.15320 
Mean 5.16850 9.55795 

Standard   
deviation 2.60023 1.24359 

F22 

Best 10.40290 10.40290 
Mean 9.88457 9.97743 

Standard   
deviation 1.80663 1.35162 

F23 

Best 10.53640 10.53640 
Mean 9.94920 10.22230 

Standard   
deviation 2.01901 1.27639 

 
 

5. CONSTRAINED STRUCTURAL OPTIMIZATION 
 

Structural optimization is usually addressed with narrow feasible regions and complex 
function analyses. Thus, optimal design of truss and frame structures is treated to validate 
capability of the proposed OCBO in solving constrained problems. 

As a common practice, structural weight minimization is formulated subject to the stress 
and displacement constraints. It is utilized here via the following penalized function: 

 

1

( ) - *(1 * )
m

i
i

Maximize F X W Kp C


    (19)

 
W denotes the total structural weight, Kp, is the penalty coefficient desired by the user 

and Ci stands for the violation of the ith stress or displacement constraint. The design vector
X includes section indices (or areas) for sizing design, however, for geometry part of 
optimization, nodal coordinates are also utilized as design variables. 

 The same control parameters are applied and the maximum number of function 
evaluations is set to 10000. Statistical results of truss examples are derived from 50 
independent runs with 10Kp  . 
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Table 9: Available sections for the 52-bar truss 

No.  No.  No.  No.  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 
 

71.613 

90.968 

126.451 

161.290 

198.064 

252.258 

285.161 

363.225 

388.386 

494.193 

506.451 

641.289 

645.160 

792.256 

816.773 

939.998 
 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 
 

1008.385 

1045.159 

1161.288 

1283.868 

1374.191 

1535.481 

1690.319 

1696.771 

1858.061 

1890.319 

1993.544 

729.031 

2180.641 

2238.705 

2290.318 

2341.931 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

2477.414 

2496.769 

2503.221 

2696.769 

2722.575 

2896.768 

2961.284 

3096.768 

3206.445 

3303.219 

3703.218 

4658.055 

5141.925 

5503.215 

5999.988 

6999.986 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 
 

7419.340 

8709.660 

8967.724 

9161.272 

9999.980 

10322.560 

10903.204 

12129.008 

12838.684 

14193.520 

14774.164 

15806.420 

17096.740 

18064.480 

19354.800 

21612.860 
 

 
5.1 Sizing design of the 52-bar truss  

As the first engineering example the planar truss of Fig.3, is optimized for minimal weight. 
The structural members are divided into 12 groups: (1) 1 4A A , (2) 5 10A A , (3) 

11 13A A , (4) 14 17A A , (5) 18 23A A , (6) 24 26A A , (7) 27 30A A , (8) 31 36A A , (9) 

37 39A A , (10) 40 43A A , (11) 44 49A A , (12) 50 52A A . Material density of steel is 

taken 7860 3kg/m  and modulus of elasticity is 52.07 10 Mpa. The member stresses are 

limited to 180 Mpa in both tension and compression. Static loading of 100xP kN and 

200yP kN  is exerted on the nodes 17, 18, 19 and 20. 

The discrete variables are selected from Table 9. This benchmark problem has already 
been treated by Li et al. [24] using HPSO, Sadollah et al. [25] using MBA, Lee et al. [26] 
using HS, Cheng and Prayogo [27] using SOS and Wu and Chaw [28] using GA. The best 
results among them are given in Table 10; next to those obtained by the present works.  

The first rank in this optimization belongs to OCBO which has obtained optimal weight 
of 1901.567kg by just 6525 structural analyses. NFEL indicates the required number of 
fitness evaluations up to the last improvement during optimization. CBO stands at the 
second rank with 1902.606kg by 8000 function calls while the other literature works 
resulted in higher weights even with 100000 analyses Table 10. 

 Further comparsion of the present methods confirms superiority of OCBO both in the 
worst run and mean result. Moreover, it is more robust due to its lower standard deviation of 
91.5kg with respect to 187.0kg by CBO. 

6 210 m 6 210 m 6 210 m 6 210 m
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In order to better study trend of balancing between exploration and exploitation, sum of the 
velocity norms for CB’s at each generation is calculated and traced via iterations of the search. 
In this regard, Fig.4 shows higher diversity at early stages of OCBO followed by more rapid 
convergence than CBO, to zero velocity of CB’s as the search progress. 

 
Table 10: Optimization results for the 52-bar truss 

Element group 
Wu and Chow, 

GA [28] 
Li et al. 

PSO [24] 
Cheng and Prayogo, 

SOS [27] 
Present work 

CBO OCBO 
G1 
G2 
G3 
G4 
G5 
G6 
G7 
G8 
G9 
G10 
G11 
G12 

4658.055 
1161.288 

645.16 
3303.219 
1045.159 
494.193 
2477.414 
1045.159 
285.161 
1696.771 
1045.159 
641.289 

4658.055 
1161.288 
363.225 
3303.219 
940.000 
949.193 
2238.705 
1008.385 
388.386 
1283.868 
1161.288 
792.256 

4658.055 
1161.288 
494.193 
3303.219 
940.000 
494.193 
2238.705 
1008.385 
494.193 
1283.868 
1161.288 
494.193 

4658.055 
1161.288 
494.193 

3303.219 
939.998 
494.193 

2238.705 
1008.385 
494.193 

1283.868 
1161.288 
494.193 

4658.055 
1161.288 
506.451 
3303.219 
939.998 
506.451 
2238.705 
1008.385 
388.386 
1283.868 
1161.288 
506.451 

Best weight (kg) 
Mean weight (kg) 
Worst weight (kg) 
Standard deviation 

NFEL 

1970.142 
- 
- 
- 

60,000 

1905.49 
- 
- 
- 

100,000 

1902.605 
- 
- 
- 
- 

1902.6055 
2087.2509 
2645.216 
186.9582 

8000 

1901.5671 
1943.3098 
2156.5225 
91.5630 

6525 

 

 
Figure 3. The 52-bar truss [25] 
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Figure 4. Diversity trace for the 52-bar truss example 

 

 
Figure 5. The 15-bar truss [30] 

 
 

5.2 Geometry and sizing design of the 15-bar truss  

Both member sizing and nodal geometry for the 15-bar truss of Fig.5 is optimized in this 
example. Material density is 30.1 /lb in ( 32720 /kg m ) and the modulus of elasticity is 
10000 ksi ( 68.947 GPa ). The stress limit for every truss member is 25 ksi in tension and 
compression. Both x and y coordinate of the nodes 2, 3, 6 and 7, are taken geometry design 
variables. The nodes 6 and 7 have the same x coordinates as the nodes 2 and 3, respectively. 
For the nodes 4 and 8, just y-coordinates are considered as design variables. Thus, the design 
vector constitutes 15 sizing variables (cross-sectional area of bars) and 8 geometry variables 
( 2 6x =x , 3 7x =x , 2y , 3y , 4y , 6y , 7y , 8y ). The availabe profile list for sizing is given by 

S = {0.111, 0.141, 0.174, 0.22, 0.27, 0.287, 0.347, 0.44, 0.539, 0.954, 1.081, 1.174, 1.333, 
1.488, 1.764, 2.142, 2.697, 2.8, 3.131, 3.656, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.3, 
10.85, 13.33, 14.29, 17.17, 19.18} 2in . Table 11 reveals geometry variable bounds.  
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Table 11: Bounds of geometric variables for the 15-bar truss design 

Design variable Lower bound (in) Upper bound (in) 
X2 
X3 
Y2 
Y3 
Y4 
Y6 
Y7 
Y8 

100 
220 
100 
100 
50 
-20 
-20 
20 

140 
260 
140 
140 
90 
20 
20 
60 

 
Table 12: Optimization results for the 15-bar truss 

Design variable 
Wu and Chow, 

GA [28] 
Tang et al. 
GA [33] 

Hwang et al. 
ARSAGA [31] 

Present work 
CBO OCBO 

Sizing variables (in2) 
A1 
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 
A10 
A11 
A12 
A13 
A14 
A15 

1.174 
0.954 
0.440 
1.333 
0.954 
0.174 
0.440 
0.440 
1.081 
1.333 
0.174 
0.174 
0.347 
0.347 
0.440 

1.081 
0.539 
0.287 
0.954 
0.954 
0.220 
0.111 
0.111 
0.287 
0.220 
0.440 
0.440 
0.111 
0.220 
0.347 

0.954 
1.081 
0.440 
1.174 
1.488 
0.270 
0.270 
0.347 
0.220 
0.440 
0.220 
0.440 
0.347 
0.270 
0.220 

1.081 
0.954 
0.141 
1.174 
0.954 
0.539 
0.111 
0.111 
0.111 
0.220 
0.174 
0.174 
0.270 
0.539 
0.141 

0.954 
0.954 
0.270 
1.081 
0.539 
0.270 
0.111 
0.111 
0.287 
0.440 
0.287 
0.111 
0.270 
0.270 
0.270 

Geometry variables (in) 
X2 
X3 
Y2 
Y3 
Y4 
Y6 
Y7 
Y8 

123.189 
231.595 
107.189 
119.175 
60.462 
-16.728 
15.565 
36.645 

133.612 
234.752 
100.449 
104.738 
73.762 
-10.067 
-1.339 
50.402 

118.346 
225.209 
119.046 
105.086 
63.375 
-20.000 
-20.000 
57.722 

120.9269 
220.3005 
113.2465 
101.6757 
59.0421 
14.4389 
15.4493 
59.2315 

118.8259 
239.0584 
128.9736 
112.2486 
50.9543 
-3.2506 
8.3002 

51.2586 
Best weight (lb) 
Mean weight (lb) 
Worst weight (lb) 
Standard deviation 

NFEL 

120.528 
- 
- 
- 
- 

79.820 
- 
- 
- 
- 

104.573 
- 
- 
- 
- 

80.7652 
84.0269 
89.1467 
2.2316 
9650 

78.1435 
80.3756 
81.6599 
0.7243 
9900 
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This problem has been addressed by several investigators including Kamyab-Moghadas 
and Gholizadeh using CAFA [29], Kazemzade-Azad et al. using MBRCGA [30], Hewang 
and He using ARSAGA [31], Wu and Chow [32] and Tang et al. using GA [33]. 

 

(a) (b) 
Figure 6. (a) Optimum geometry of the 15-bar truss by OCBO, (b) Position of the nodes 4, 8 
 
The best optimal geometry has been achieved by OCBO as depicted in Fig.6. Acording to 

Table 12, in this example OCBO has captured the least weight of 78.14lb via 9900 NFEL 
while the best result of the other algorithms, is 79.80lb by GA [33]. The optimal weight by 
CBO; which is 80.76lb has not shown further improvement after NFEL of 9650 up to 10000 
structural analyses. Table 12 also confirms superiority of OCBO in the worst, mean and 
standard deviation of the results. Fig.7, shows convergence trends toward zero velocity by 
OCBO and CBO. 

 

 
Figure 7. Diversity curves for the 15-bar truss example 

 
5.3 Sizing optimization of the 3-bay 12-story frame via spectral design  

In this example, the structure type is changed to the steel frame while both static 
gravitational and spectral seismic loading are taken into account by more rigorous analyses. 
Sizing design for the 3-bay 12-story ordinary moment frame is performed using available 
sections of Tables 13 and 14 for beams and columns, respectively. The story height and bay 
length are taken 3.3m and 5m, respectively. Frame consists of 84 members collected via 8 
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column groups and 4 beam groups as demonstrated in Fig. 8.  
 

Table 13: Allowable sections for frame beams 

No. Profile No. Profile 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

IPB 10 
IPB 12 
IPB 14 
IPB 16 
IPB 18 
IPB 20 
IPB 22 
IPB 24 
IPB 26 
IPB 28 
IPB 30 
IPB 32 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

IPB 34 
IPB 36 
IPB 40 
IPB 45 
IPB 50 
IPB 55 
IPB 60 
IPB 65 
IPB 70 
IPB 80 
IPB 90 

IPB 100 

 
For the seismic excitation, design spectrum of the Iranian seismic design code [34] is 

applied with the parameters: A=0.35, Ru=5, I=1 and soil type-II. Story masses are exerted 
on beams by a uniformly distributed load of 3500kgf/m. Feasibility of candidate solution, is 
checked due to LRFD design requirements [35]. 

 
Table 14: Allowable sections for frame columns 

No. Profile 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Box30*30*1 
Box30*30*2 
Box30*30*3 
Box35*35*1 
Box35*35*2 
Box35*35*3 
Box40*40*1 
Box40*40*2 
Box40*40*3 
Box45*45*1 
Box45*45*2 
Box45*45*3 
Box50*50*1 
Box50*50*2 
Box50*50*3 

 
According to Table 15, in this example OCBO has captured the mean result of 38326kg 

with standard deviation of 688kg; while CBO has resulted in an average of 38658kg and 
deviation of 1035kg. In addition, higher quality of the best solution for OCBO is revealed by 
Table 15 as is clearly observed in Fig.10a. For the sake of fair comparison, fitness values are 
depicted vs the number of function calls. 
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Figure 8. The 3-bay 12-story frame 

 
Fig. 9 shows that in this example, OCBO has not only higher convergence rate than CBO 

but also it has successfully overpassed local optima. The matter is related to the difference 
between the methods in trend of diversity decrease with iterations. As shown in Fig.9b, 
OCBO provides higher diversity in early iterations but more rapid convergence in the final 
ones, with respect to CBO. Such results address the effect of opposition-based learning in 
accelerated exploration of global optimum. 
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Table 15: Optimization results for the 3-bay 12-story frame 

Element group CBO OCBO 

C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
B1 
B2 
B3 
B4 

Box45*45*1 
Box45*45*1 
Box35*35*1 
Box45*45*1 
Box35*35*1 
Box35*35*1 
Box30*30*1 
Box30*30*1 

IPB 34 
IPB 30 
IPB 28 
IPB 22 

Box45*45*1 
Box45*45*1 
Box45*45*1 
Box40*40*1 
Box35*35*1 
Box35*35*1 
Box30*30*1 
Box30*30*1 

IPB 32 
IPB 30 
IPB 28 
IPB 22 

Best weight (kg) 
Mean weight (kg) 
Worst weight (kg) 
Standard deviation 

37301.7240 
38657.5164 
40706.3880 
1035.3129 

37297.5840 
38325.7908 
39737.0880 

687.8315 

 
 

 
(a) 

 
(b) 

Figure 9. (a) Convergence and (b) diversity curves for the 3-bay 12-story frame 
 

5.4 Earthquake clustering problem  

An example of earthquake clustering is treated here as a discrete problem. Given a number 
of seismic records, the problem is to subdivide them in a prescribed number of groups; 
namely K clusters. Each entity (Earthquake record) is desired to be similar to the other 
entities in the same cluster but far from the ones in the other clusters. Similarity is measured 
by a distance metric over entity vectors. A common metric to evaluate clustering is: 
 

max( , )
i i

i
i i

q p
s

q p


  (20)
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is  stands for silhouette value of the ith enitity; for which ip and iq denote the mean 

minimal with-in-cluster and maximal out-of-cluster distances; respectively. The silhouette 
value of each entity varies between -1 (the worst case) and +1 (the best case).  

Consequently, the clustering problem is formulated here as follows: 
 

1

( )
Ne

i
i

Maximize f X s


  (21)

 

Every component ix in the design vector; is the cluster number associated with the 

corresponding entity. It is an integer number limited between 1 and K. The optimum is the 
clustering result with maximum sum of silhouette values.  

In this example, a datamatrix of 100eN   earthquake records on different soil types and 

magnitutes are selected from worldwide catalogue of PEER [36]. Euclidean distance is used in 
calculation of silhouette values; that is norm of difference vector between every two attribute 
vectors. A number of attributes are provided in the vector for each seismic record; including 
peak ground displacement, velocity and acceleration, effective duration, energy of the record, 
earthquake magnitude and soil-type of the site. The optimal clustering is searched by CBO and 
OCBO for 10K  . Result of clustering optimization is illustrated in Fig. 10. As can be 
realized, embedding OBL to CBO has considerably accelerated its convergence toward high 
quality results; even in such a discrete problem. The some of velocity norm in OCBO rapidly 
decreases after some early iterations; showing proper convergence trend. 

 

 
(a) 

 
(b) 

Figure 10. (a) Convergence and (b) diversity curves for Earthquake clustering problem 
 
 

6. CONCLUSION 
 

In the present work, opposition-based learning was applied at a parameter-less variant of 
colliding bodies optimization. Special static and dynamic types of OBL are offered. 
Additional exploitation is provided by embedding crossover to the static phase of learning. 
A fitness-based screening strategy is also employed to maintain fixed size of the population.  

The proposed OCBO was found quite effective in capturing global optima via four 
distinct categories of unconstrained functions. In majority of the tests, the present method of 
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OBL has enhaced performance of CBO not only in the best but also for the mean results. 
The standrard deviation about the mean has also been lowered; exhipiting stable 
convergence of OCBO. 

Performance test was repeated for more complicated constrained structural optimization. 
Examples of size and geometry optimization of trusses were treated under static loading 
with different constraints. Consequently, OCBO effectiveness was validated in capturing 
higher quality optima than the other literature works.  

Defining a diversity measure, behavior of the treated algorithms were better studied; that 
is by sum of the population velocity norms vs iteration number. When such an index 
converges to zero, all the CB’s are stable at their final positions and no further fitness 
improvement is observed. Tracing some of velocity norm index, reveals trend of exploration 
and exploitation of the algorithm in hand. Consequently, it was declared that OCBO exerts 
more exploration at early stages of the search as a result of embedding OBL to the CBO. 
Once the global optimum region was detected, OCBO rapidly converges toward it.  

Treating an example of frame sizing by spectral dynamic analyses, it was shown that the 
embedded opposition-based learning has enabled the original method to overpass local 
optima and achive a considerably higher fitness level. Applying OBL has also enhanced the 
convergence rate of CBO in earthquakes clustering as a discerete practical problem.  

The proposed method of OBL is found quite efficient to improve performance of the 
parameter-less CBO; however, other powerful variants of CBO are not considered here 
because of having more parameters. According to the numerical simulations, OCBO exhibits 
successive effectiveness in capturing high quality optima. In addition, it shows competitive 
mean results and convergence trend. Hence, the proposed method can be recommended for 
practice due to its few control parameters and efficiency in treated problems of 
unconstrained, constrained, continuous and discrete types.  
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