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ABSTRACT 
 

This paper proposes a modified sine cosine algorithm (MSCA) for discrete sizing 

optimization of truss structures. The original sine cosine algorithm (SCA) is a population-

based metaheuristic that fluctuates the search agents about the best solution based on sine 

and cosine functions. The efficiency of the original SCA in solving standard optimization 

problems of well-known mathematical functions has been demonstrated in literature. 

However, its performance in tackling the discrete optimization problems of truss structures 

is not competitive compared with the existing metaheuristic algorithms. In the framework of 

the proposed MSCA, a number of worst solutions of the current population is replaced by 

some variants of the global best solution found so far. Moreover, an efficient mutation 

operator is added to the algorithm that reduces the probability of getting stuck in local 

optima. The efficiency of the proposed MSCA is illustrated through multiple benchmark 

optimization problems of truss structures. 
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1. INTRODUCTION 
 

The material cost is an important factor in the construction of structures and from an 

economical viewpoint, the design of a minimum weight is the best structure. In order to find 

such designs, structural optimization techniques can be effectively used. In the last decade, 

many optimization techniques have been developed and successfully applied to a wide range 

of structural optimization problems including sizing, layout and topology optimization 

problems [1-3]. Metaheuristics are the most general kinds of stochastic optimization 

algorithms and they are now recognized as one of the most practical approaches for solving 
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a wide range of optimization problems. The main idea behind designing these metaheuristic 

algorithms is to solve complex optimization problems where other optimization methods 

have failed to be effective. The practical advantage of metaheuristics lies in both their 

effectiveness and general applicability. In recent years, metaheuristic algorithms are 

emerged as the global search approaches which are responsible to tackle the complex 

optimization problems. 

Most of the metaheuristic algorithms are developed based on natural phenomena. Every 

metaheuristic method consists of a group of search agents that explore the design space 

based on randomization and some specified rules inspired the laws of natural phenomena. 

For example, Genetic Algorithms (GA) [4], Biogeography-Based Optimization (BBO) [5], 

and Differential Evolution (DE) [6] are developed based on the Darwin’s principle of 

survival of the fittest. Gravitational Search Algorithm (GSA) [7], Colliding Bodies 

Optimization (CBO) [8] and Center of Mass Optimization (CMO) [9] are Physics-based 

metaheuristic algorithms. Particle Swarm Optimization [10] (PSO), Ant Colony 

Optimization [11] (ACO), Bat algorithm [12] (BA) and Dolphin Echolocation Algorithm 

(DEA) [13] are recognized as popular Swarm intelligence metaheuristics. One of the newly 

developed metaheuristic algorithms is the Sine Cosine Algorithm (SCA), which is proposed 

by Mirjalili [14]. The SCA requires that the generated solutions fluctuate outwards or 

towards the best solution found so far using sine and cosine functions. It was demonstrated 

in [14] that the SCA is able to effectively solve the continuous optimization problems.  

Optimization of truss structures is very popular in the area of structural optimization and 

over the last decades, various algorithms have been proposed for solving these problems. 

There is a significant number of metaheuristics employed for truss optimization with 

discrete variables in the literature such as: Discrete Heuristic Particle Swarm Ant Colony 

Optimization (DHPSACO) [15], Improved Dolphin Echolocation Algorithm (IDEA) [16], 

Improved Mine Blast Algorithm (IMBA) [17], Adaptive Elitist Differential Evolution 

(AEDE) [18], and Improved Fireworks Algorithm (IFWA) [19]. In the present study, SCA is 

focused and a modified Sine Cosine algorithm (MSCA) is proposed to handle the truss 

structures optimization with discrete design variables. In the MSCA two main strategies are 

followed for the exploration and exploitation of the design space. In the first strategy, some 

of worst solutions in each iteration are removed and the same number of variants of the best 

solution is added to the population. In the second strategy, a mutation operator is added to 

the algorithm. Five benchmark optimization problems of truss structures with discrete 

variables are presented and the results of MSCA are compared with literature.   

 

 

2. TRUSS OPTIMIZATION PROBLEM 
 

For the optimization problem of trusses, objective function is the structural weight and some 

limitations are usually considered on nodal displacements and element stress as the design 

constraints. Formulation of truss structures optimization problem is as follows: 
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where W is structural weight; γi, li and Xi are the density of material, element length and 

cross-sectional area of ith element, respectively; displacement and stress constraints are 

represented by d

jg  and 
s

kg , respectively; dj and σk are jth node displacement and kth element 

stress, respectively; jd  and k  are their allowable values; n and m are numbers of elements 

and nodes, respectively. 

The following exterior penalty function (EPF) is employed to handle the constraints of 

the above constrained optimization problem. 
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where Φ is pseudo unconstrained objective function; and pr  is a penalty parameter. In this 

study, rp is linearly increased from 1.0 at the first iteration to 106 at the last one during the 

optimization process. 

 

 

3. SINE COSINE ALGORITHM 
 

In essence, all population-based metaheuristic algorithms explore the design space using a 

number of search agents which follow a set of updating rules. These updating rules play an 

important role in performance of the metaheuristic algorithms. In the Sine Cosine Algorithm 

(SCA) [14] the following equation is used as the updating rule of position of population in 

the design space: 
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where 1

,

t

jiX and t

jiX ,
are the jth design variable of the ith solution at iterations t+1 and t, 

respectively; sin(.) and cos(.) represent the sine and cosine mathematical functions; t

jP is the 

jth design variable of the best solution; a is a constant and in this study a =2.0; tmax is the 
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maximum number of iterations; r2 and r4 are random numbers in [0 , 2π] and [0,1], 

respectively; and r3 is a random number that r3 > 1 and r3 < 1 emphasize and deemphasize 

the effect of the best solution in defining the distance.  

It was demonstrated in [14] that the original SCA has proper performance in solving 

standard optimization problems of well-known mathematical functions. The computational 

experience of the present study however reveals that the SCA is not an efficient 

metaheuristic algorithm for discrete sizing optimization of truss structures.  

 

 

4. MODIFIED SINE COSINE ALGORITHM 
 

In order to improve the performance of the SCA in dealing with the discrete sizing 

optimization problems of truss structures two computational strategies are implemented and 

the improved metaheuristic is named as modified Sine Cosine algorithm (MSCA). The 

proposed strategies, termed here as Regeneration and Mutation, are described below. In 

addition, updating rule of position of population in the discrete MSCA is as follows: 
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where round(.) rounds numbers to their nearest integer. 

Regeneration: in each iteration of the optimization process, the population, including np 

particles, is sorted in an ascending order based on the objective function values of particles 

as represented below:  
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where sort(Xt) is the sorted current population; and t

kX  to t

npX are the worst solutions at 

iteration t that should be regenerated.  

Then, a number of λ×np worst particles (i.e. t

kX  to t

npX ) are removed from the population 

and instead, the best solution found so far, T

21 ] ...  ...  [ *

n

*

j

*** XXXXX  , is copied λ×np times in 

the population. In these solutions, except the last one, one randomly selected design variable 

is regenerated in the design space on a random basis as follows: 
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where L

jX and U

jX are lower and upper bounds of the jth design variable; and r is a random 
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number in [0,1]. 

The regenerated design variables of particles t

kX  to t

npX 1
 are substituted in the last 

particle ( t

npX  ). This strategy will increase the probability of finding the promising regions of 

the design space. 

Mutation: in the framework of MSCA, a mutation operation is implemented to reduce 

the probability of trapping into local optima. In this way, a mutation rate of mr is considered 

and for each particle (Xi , i=1,2,…,np) a random number in [0 ,1] is selected in each 

iteration. If for the ith particle, the selected random number is less than mr, Xi will be 

regenerated in the design space as follows: 
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where in iteration t, Rt is a vector of random numbers in [0, 1]; tX best
 is the best particle of 

the current population; and t

rX  is a randomly selected particle from the current population. 

In the framework of MSCA, a simple mechanism is employed to return into the feasible 

region the agents that violate side constraints. During the optimization process, if a design 

variable violates the side constraints, it will be replaced by the lower/upper bound as 

follows: 

 




















U

ji

t

ji

U

ji

L

ji

t

ji

L

ji

t

ji

XXX

XXX

X

,

1

,,

,

1

,,

1

,

 if   

 if   
 

(12) 

 

where L

jiX ,
and U

jiX ,
 are respectively the lower and upper bounds of the jth design variable of 

the ith solution. 

The best combination of internal parameters λ and mr, is determined by performing 

sensitivity analysis. In this way, λ{0.1, 0.2, 0.3} and mr{0.01, 0.05, 0.10} are 

considered and for each combination of these two parameters, 20 independent optimization 

runs are conducted. The results of this study demonstrate that the best combination is λ=0.2 

and mr=0.05. 

The flowchart of MSCA is depicted in Fig. 1.  

 

 

5. NUMERICAL RESULTS 
 

In order to illustrate the merit of the proposed MSCA, a number of popular discrete 

benchmark truss optimization problems are presented and the obtained results are compared 

with those of literature. For the presented examples, 20 independent optimization runs are 

performed and the best weight (Best), average weight (Average) and the standard deviation 

(SD) of optimal weights are reported. 
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Figure 1. Flowchart of MSCA 

 

5.1 Example 1: 10-bar planar truss 

The 10-bar truss shown in Fig. 2 is one of the most extensively studied problems. The 

vertical load in nodes 2 and 4 is equal to 105 lb. The Young's modulus and density of 

material are 104 ksi and 0.1 lb/in3, respectively.  
 

 
Figure 2. 10-bar truss  

 

The allowable stress for all members is specified as 25 ksi both in tension and 

Updating the population using Eq. (7) 

Regenerating of worst particles using  

Eqs. (9) and (10) 

Mutating the selected particles using  

Eq. (11) 

 

Updating the best particle found so far 

(X*) 

Are stopping conditions met? 

Evaluating the fitness values of 

particles 

Generation of initial population 

Final solution of the algorithm is X*  

Yes  

No  
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compression. The maximum displacements of all free nodes in the x and y directions are 

limited to ±2 in. In this example, the discrete design variables are selected from the 

following list: [1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 

3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 

13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50] 

(in2). 

Cross-sectional areas of elements 1 to 10 (i.e. A1 to A10) are considered as the design 

variables. In the optimization process, 50 particles are involved and the maximum number of 

iterations is chosen to be 200.  

The optimization results of SCA and MSCA are compared with those of HPSO [20], 

HHS [21], and AEDE [18] in Table 1. In addition, the convergence curves of SCA and 

MSCA are compared in Fig. 3. 

 
Table 1: Results of optimization for the 10-bar truss 

Design variables HPSO HHS AEDE SCA MSCA 

A1 30.0 33.5 33.5 26.5 33.5 

A2 1.62 1.62 1.62 2.62 1.62 

A3 22.9 22.9 22.9 26.5 22.9 

A4 13.5 14.2 14.2 18.8 14.2 

A5 1.62 1.62 1.62 1.62 1.62 

A6 1.62 1.62 1.62 2.38 1.62 

A7 7.97 7.97 7.97 11.5 7.97 

A8 26.5 22.9 22.9 22.0 22.9 

A9 22.0 22.0 22.0 19.9 22.0 

A10 1.80 1.62 1.62 1.80 1.62 

Best (lb) 5531.98 5490.74 5490.74 5633.44 5490.74 

Average (lb) N/A 5493.49 5502.62 5838.26 5492.64 

SD (lb) N/A 10.46 20.78 220.39 2.42 

Analyses 50000 5000 2550 10000 10000 

 

 
Figure 3. Convergence histories of SCA and MSCA for 10-bar truss 
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It can be observed that SCA could not provide competitive results compared with the 

other algorithms. MSCA, AEDE and HHS find the best optimal design among other 

algorithms. However, the statistical results of MSCA, in terms of Average and SD are very 

better than those of AEDE and HHS. Moreover, the convergence rate of the MSCA is 

considerably better than that of the original SCA. 

 

5.2 Example 2: 25-bar spatial truss 

The 25-bar spatial truss structure, shown in Fig. 4, is one of the popular design examples in 

literature. The material density is 0.1 lb/in3 and the modulus of elasticity is 104 ksi. The 

structure includes 25 members, which are divided into eight groups, as follows: (1) A1, (2) 

A2–A5, (3) A6–A9, (4) A10– A11, (5) A12–A13, (6) A14–A17, (7) A18–A21 and (8) A22–A25. The 

allowable stress of the members is ±40 ksi and all nodes are subjected to displacement 

limitation of ±0.35 in. 

 

 
Figure 4. 25-bar spatial truss 

 

The design variables will be selected from the set: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4] 

(in2). The loads applied to the truss are given in Table 2. 

 
Table 2: Loading conditions for the 25-bar truss (kips) 

Node Fx Fy Fz 

1 1.0 –10.0 –10.0 

2 0.0 –10.0 –10.0 

3 0.5 0.0 0.0 

6 0.6 0.0 0.0 

 

The optimization results of this study, by considering 50 particles and 100 iterations, are 

compared with those of HHS [21], AEDE [18] and ECBO [22] in Table 3. In addition, Fig. 5 

compares the convergence curves of SCA and MSCA. 
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Table 3: Results of optimization for the 25-bar truss 

Design variables HPSO ECBO AEDE SCA MSCA 

A1 0.1 0.1 0.1 0.3 0.1 

A2–A5 0.3 0.3 0.3 0.1 0.3 

A6–A9 3.4 3.4 3.4 3.4 3.4 

A10–A11 0.1 0.1 0.1 0.1 0.1 

A12–A13 2.1 2.1 2.1 1.4 2.1 

A14–A17 1.0 1.0 1.0 1.2 1.0 

A18–A21 0.5 0.5 0.5 0.7 0.5 

A22–A25 3.4 3.4 3.4 3.4 3.4 

Best (lb) 484.85 484.85 484.85 486.29 484.85 

Average (lb) - 485.89 485.01 491.17 484.94 

SD (lb) - - 0.273 2.55 0.22 

Analyses 25000 7050 1678 5000 5000 

 

 
Figure 5. Convergence histories of SCA and MSCA for 10-bar truss 

 

The numerical results indicate that, all algorithms, except SCA, converge to the best 

optimal design however, the Average, SD and convergence rate of MSCA are better in 

comparison with other algorithms. The computational effort of HPSO is significantly more 

than that of other algorithms. As shown in Fig. 5, the MSCA present better convergence 

behavior in comparison with the original SCA. 

 

5.3 Example 3: 52-bar planar truss 

Another popular benchmark truss optimization problem is the 52-bar truss shown in Fig. 6 in 

which Px=100 kN and Py=200 kN. The Young's modulus, the material density and the 

allowable stress are 207 GPa, 7860 kg/m3 and ±180 MPa, respectively. Element groups are 

as: (1) A1–A4, (2) A5–A10, (3) A11–A13, (4) A14–A17, (5) A18–A23, (6) A24–A26, (7) A27–A30, (8) 

A31–A36, (9) A37–A39, (10) A40–A43, (11) A44–A49, and (12) A50–A52 which are selected from 

Table 4 during the optimization process. In this example, population size and maximum 

number of iterations are 50 and 200, respectively. 
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Figure 6. 52-bar truss 

 

Table 4: Available cross-sectional areas of the AISC 

No. mm2 in2  No. mm2 in2  No. mm2 in2  No. mm2 in2 

1 71.613 0.111  17 1008.385 1.563  33 2477.414 3.84  49 7419.340 11.5 

2 90.968 0.141  18 1045.159 1.62  34 2496.769 3.87  50 8709.660 13.5 

3 126.451 0.196  19 1161.288 1.80  35 2503.221 3.88  51 8967.724 13.9 

4 161.290 0.250  20 1283.868 1.99  36 2696.769 4.18  52 9161.272 14.2 

5 198.064 0.307  21 1374.191 2.13  37 2722.575 4.22  53 9999.980 15.5 

6 252.258 0.391  22 1535.481 2.38  38 2896.768 4.49  54 10322.560 16.0 

7 285.161 0.442  23 1690.319 2.62  39 2961.284 4.59  55 10903.204 16.9 

8 363.225 0.563  24 1696.771 2.63  40 3096.768 4.80  56 12129.008 18.8 

9 388.386 0.602  25 1858.061 2.88  41 3206.445 4.97  57 12838.684 19.9 

10 494.193 0.766  26 1890.319 2.93  42 3303.219 5.12  58 14193.520 22.0 

11 506.451 0.785  27 1993.544 3.09  43 3703.218 5.74  59 14774.164 22.9 

12 641.289 0.994  28 2019.351 3.13  44 4658.055 7.22  60 15806.420 24.5 

13 645.160 1.0  29 2180.641 3.38  45 5141.925 7.97  61 17096.740 26.5 

14 792.256 1.228  30 2238.705 3.47  46 5503.215 8.53  62 18064.480 28.0 

15 816.773 1.266  31 2290.318 3.55  47 5999.988 9.30  63 19354.800 30.0 

16 939.998 1.457  32 2341.931 3.63  48 6999.986 10.85  64 21612.860 33.5 
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Table 5 compares the optimization results of the present study and those of obtained by 

HPSO [20], IMBA [17] and AEDE [18]. Comparison of convergence curves of SCA and 

MSCA is shown in Fig. 7. 

 
Table 5: Results of optimization for the 52-bar truss 

Design variables HPSO IMBA AEDE SCA MSCA 

A1–A4 4658.055 4658.055 4658.055 4658.055 4658.055 

A5–A10 1161.288 1161.288 1161.288 1161.288 1161.288 

A11–A13 363.225 494.193 494.193 363.225 494.193 

A14–A17 3303.219 3303.219 3303.219 3303.219 3303.219 

A18–A23 939.998 939.998 939.998 1045.159 939.998 

A24–A26 494.193 494.193 494.193 506.451 494.193 

A27–A30 2238.705 2238.705 2238.705 2238.705 2238.705 

A31–A36 1008.385 1008.385 1008.385 1008.385 1008.385 

A37–A39 388.386 494.193 494.193 641.289 494.193 

A40–A43 1283.868 1283.868 1283.868 1690.319 1283.868 

A44–A49 1161.288 1161.288 1161.288 1045.159 1161.288 

A50–A52 792.256 494.193 494.193 645.160 494.193 

Best (kg) 1905.49 1902.605 1902.605 1947.535 1902.605 

Average (kg) - 1903.076 1906.735 1958.564 1904.129 

SD (kg) - 1.13 6.679 9.37 2.67 

Analyses 100000 4750 3402 10000 10000 

 

 

 
Figure 7. Convergence histories of SCA and MSCA for 52-bar truss 

 

It can be seen that IMBA, AEDE and MSCA converge to the same best solution and the 

SCA is not competitive with the other algorithms. In this example, IMBA is the best 

algorithm in terms of Average and SD and the second best algorithm is MSCA. 

Furthermore, Fig. 7 reveals that the convergence rate of the MSCA is very better than that of 

the original SCA. 
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5.4 Example 4: 72-bar spatial truss 

The 72-bar spatial truss is shown in Fig. 8. In this example, there are 16 groups of elements as 

follows: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30 (7) A31–A34, (8) 

A35– A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, (13) A55– A58, (14) A59–A66 (15) 

A67–A70, (16) A71–A72. The modulus of elasticity and material density are 104 ksi and 0.1 lb/in3, 

respectively. During the optimization process the design variables are selected from the data 

base of Table 4. The allowable stress in elements is ±25 ksi and the allowable horizontal 

displacement is ±0.25 in. In addition, there are two loading conditions given in Table 6.  

 

 
Figure 8. 72-bar truss 

 

Table 6: Loading conditions for the 72-bar truss 

Node 
Loading condition 1 (kips) 

 
Loading condition 2 (kips) 

Fx Fy Fz Fx Fy Fz 

17 5.0 5.0 –5.0  0.0 0.0 –5.0 

18 0.0 0.0 0.0  0.0 0.0 –5.0 

19 0.0 0.0 0.0  0.0 0.0 –5.0 

20 0.0 0.0 0.0  0.0 0.0 –5.0 

 

In the optimization process the population size and maximum number of iterations are 

considered to be 50 and 200, respectively. The results obtained in the present study are 

compared with those of HPSO [20], IMBA [17] and AEDE [18] in Table 8. Furthermore, 

convergence curves of SCA and MSCA are compared in Fig. 9. 
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Table 8: Results of optimization for the 72-bar truss 

Design variables  HPSO IMBA AEDE SCA MSCA 

A1–A4  4.97 1.990 1.990 3.130 1.990 

A5–A12  1.228 0.442 0.563 0.563 0.563 

A13–A16  0.111 0.111 0.111 0.111 0.111 

A17–A18  0.111 0.111 0.111 0.111 0.111 

A19–A22  2.88 1.228 1.228 1.266 1.228 

A23–A30  1.457 0.563 0.442 0.442 0.442 

A31–A34  0.141 0.111 0.111 0.111 0.111 

A35–A36  0.111 0.111 0.111 0.111 0.111 

A37–A40  1.563 0.563 0.563 0.563 0.563 

A41–A48  1.228 0.563 0.563 0.442 0.563 

A49–A52  0.111 0.111 0.111 0.111 0.111 

A53–A54  0.196 0.111 0.111 0.111 0.111 

A55–A58  0.391 0.196 0.196 0.196 0.196 

A59–A66  1.457 0.563 0.563 0.563 0.563 

A67–A70  0.766 0.391 0.391 0.442 0.391 

A71–A72  1.563 0.563 0.563 0.442 0.563 

Best (lb)  933.09 389.33 389.33 402.96 389.33 

Average (lb)  N/A 389.82 390.91 412.62 390.67 

SD (lb)  N/A 0.84 1.161 11.73 1.063 

Analyses  50000 50000 4160 10000 10000 

 

These results reveal that, MSCA is competitive in comparison with other algorithms of 

literature. The statistical results of IMBA are slightly better than those of MSCA however at 

very high computational effort. In addition, it is demonstrated that the performance of 

MSCA is better than that of SCA.  

 

 
Figure 9. Convergence histories of SCA and MSCA for 72-bar truss 

 

5. 5 Example 5: 200-bar planar truss 

The 200-bar truss shown in Fig. 10 is one of the challenging truss optimization problems.  
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Figure 10. 200-bar truss 

 

The material density, modulus of elasticity and stress limitations of the members are 

0.283 lb/in3, 30 Msi, and ±10 ksi, respectively. There are three loading conditions: (1) 1 kip 

acting in the positive x direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, and 71; (2) 10 

kips acting in the negative y direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 

19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 

54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71, 72, 73, 74, and 75; and (3) loading 

conditions 1 and 2 acting together. The variables are selected from the following database S 

= {0.100, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 

3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 14.290, 

17.170, 19.180, 23.680, 28.080, 33.700 } in.2. 

In this example, 60 particles at 200 iterations are employed during the optimization 

process. The results obtained in the present study are compared with those of improved genetic 

algorithm (IGA) [23], elitist self-adaptive step-size search (ESASS) [24] and AEDE [18] in 

Table 9. Furthermore, convergence curves of SCA and MSCA are compared in Fig. 11. 
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Table 9: Optimization results of the 200-bar truss 

Design variables Members in the group IGA DE AEDE SCA MSCA 

1 1, 2, 3, 4 0.347 0.1 0.1 0.1 0.1 

2 5, 8, 11, 14, 17 1.081 0.954 0.954 0.954 0.954 

3 19, 20, 21, 22, 23, 24 0.1 0.1 0.347 0.1 0.1 

4 
18, 25, 56, 63, 94, 101, 132, 

139, 170, 177 
0.1 0.1 0.1 0.1 0.1 

5 26, 29, 32, 35, 38 2.142 2.142 2.142 2.142 2.142 

6 
6, 7, 9, 10, 12, 13, 15, 16, 27, 

28, 30, 31, 33,34,36,37 
0.347 0.347 0.347 0.347 0.347 

7 39, 40, 41, 42 0.1 0.1 0.1 0.1 0.1 

8 43, 46, 49, 52, 55 3.565 3.131 3.131 3.813 3.131 

9 57, 58, 59, 60, 61, 62 0.347 0.1 0.347 0.1 0.1 

10 64, 67, 70, 73, 76 4.805 4.805 4.805 4.805 4.805 

11 
44, 45, 47, 48, 50, 51, 53, 54, 

65, 66, 68, 69, 71, 72, 74, 75 
0.44 0.347 0.539 0.347 0.347 

12 77, 78, 79, 80 0.44 0.1 0.347 0.1 0.954 

13 81, 84, 87, 90, 93 5.952 5.952 5.952 4.805 5.952 

14 95,96, 97, 98, 99, 100 0.347 0.1 0.1 1.764 0.1 

15 102, 105, 108, 111, 114 6.572 6.572 6.572 5.952 6.572 

16 

82, 83, 85, 86, 88, 89, 91, 92, 

103, 104, 106, 107, 109, 110, 

112, 113 

0.954 0.44 0.954 1.174 0.954 

17 115, 116, 117, 118 0.347 0.539 0.44 0.347 0.347 

18 119, 122, 125, 128, 131 8.525 7.192 8.525 8.525 8.525 

19 133, 134, 135, 136, 137, 138 0.1 0.44 0.1 1.081 0.1 

20 140, 143, 146, 149, 152 9.3 8.525 9.3 8.525 9.3 

21 

120, 121, 123, 124, 126, 127, 

129, 130, 141, 142, 144, 145, 

147, 148, 150, 151 

0.954 0.954 0.954 1.081 1.174 

22 153, 154, 155, 156 1.764 1.174 1.081 2.697 1.081 

23 157, 160, 163, 166, 169 13.3 10.85 13.33 10.85 13.33 

24 171, 172, 173, 174, 175, 176 0.347 0.44 0.539 2.697 0.44 

25 178, 181, 184, 187, 190 13.3 10.85 14.29 13.33 13.33 

26 

158, 159, 161, 162, 164, 165, 

167, 168, 179, 180, 182, 183, 

185, 186, 188, 189 

2.142 1.764 2.142 3.131 2.142 

27 191, 192, 193, 194 4.805 8.525 3.813 4.805 3.813 

28 195, 197, 198, 200 9.3 13.33 8.525 9.3 8.525 

29 196, 199 17.17 13.33 17.17 17.17 17.17 

Best (lb)  
28544

.01 

28075.

49 

27858.

50 

29611.

51 

27693.6

8 

Average (lb)  - - 
28425.

87 

31820.

84 

28358.4

6 

SD (lb)  - - 
481.59

0 

1326.7

9 
456.02 

Analyses  51360 - 11644 12000 12000 
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Figure 11. Convergence histories of SCA and MSCA for 200-bar truss 

 

The optimization results demonstrate that the proposed MSCA outperforms all other 

algorithms in terms of Best, Average and SD of the obtained optimal weights. Moreover, it 

can be observed from Fig. 11 that the convergence rate of MSCA is very better than that of 

the SCA. 

 

 

6. CONCLUDING REMARKS 
 

The present study focuses on a newly developed sine cosine algorithm (SCA) and proposes 

a modified SCA (MSCA) as the original version of this metaheuristic seriously suffers from 

the slow convergence rate when dealing with the discrete truss optimization problems. The 

proposed MSCA integrates two computational strategies during its search process. In the 

first strategy, named as Regeneration, a kind of elitism is utilized by substituting a number 

of worst solutions of the current population with some variants of the global best solution. In 

the second strategy, named as Mutation, a mutation operation is performed to increase the 

probability of finding the global optimum or near global optima.  

In order to illustrate the efficiency of the MSCA, a sort of well-known discrete 

benchmark truss optimization problems, including 10-, 25-, 52-, 72- and 200-bar trusses, are 

presented and the results of MSCA are compared with those of HPSO, HHS, AEDE, ECBO, 

IMBA, IGA, ESASS and SCA. The numerical results demonstrate that the original SCA is 

not competitive with the mentioned algorithms and consequently cannot converge to 

appropriate solutions. In contrast, in the most cases, the proposed MSCA outperforms other 

algorithms and presents an appropriate performance. 
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