Volume 8, Issue 1 (1-2018)                   2018, 8(1): 135-158 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi M, Bagherieh A R, Esfahani M R. DAMAGE AND PLASTICITY CONSTANTS OF CONVENTIONAL AND HIGH-STRENGTH CONCRETE PART II: STATISTICAL EQUATION DEVELOPMENT USING GENETIC PROGRAMMING. International Journal of Optimization in Civil Engineering 2018; 8 (1) :135-158
URL: http://ijoce.iust.ac.ir/article-1-334-en.html
Abstract:   (15714 Views)

Several researchers have proved that the constitutive models of concrete based on combination of continuum damage and plasticity theories are able to reproduce the major aspects of concrete behavior. A problem of such damage-plasticity models is associated with the material constants which are needed to be determined before using the model. These constants are in fact the connectors of constitutive models to the experimental results. Experimental determination of these constants is always associated with some problems, which restricts the applicability of such models despite their accuracy and capabilities. In the present paper, the values of material constants for a damage-plasticity model determined in part I of this work were used as a database. Genetic programming was employed to discover equations which directly relate the material constants to the concrete primary variables whose values could be simply inferred from the results of uniaxial tension and compressive tests. The simulations of uniaxial tension and compressive tests performed by using the constants extracted from the proposed equations, exhibited a reasonable level of precision.  The validity of suggested equations were also assessed via simulating experiments which were not involved in the procedure of equation discovery. The comparisons revealed the satisfactory accuracy of proposed equations.

Full-Text [PDF 1982 kb]   (4354 Downloads)    

Received: 2017/07/16 | Accepted: 2017/07/16 | Published: 2017/07/16

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb