Abstract: (22904 Views)
Practical design of tall frame-tube and diagrids are formulated as two discrete optimization problems searching for minimal weight undercodified constraints under gravitational and wind loading due to Iranian codes of practice for steel structures (Part 6 & Part 10). Particular encoding of design vector is proposed to efficiently handle both problems leading to minimal search space. Two types of modeling are employed for the sizing problem one by rigid floors without rotational degrees of freedom and the other with both translational and rotational degrees of freedom. The optimal layout of diagrids using rigid model is
searched as the second problem. Then performance of Mine Blast Optimization as a recent meta-heuristic is evaluated in these problems treating a number of three-dimensional structural models via comparative study with the common Harmony Search and Particle Swarm Optimization. Considerable benefit in material cost minimization is obtained by these algorithms using tuned parameters. Consequently, effectiveness of HS is observed less than the other two while MBO has shown considerable convergence rate and particle swarm optimiztion is found more trustable in global search of the second problem.
Type of Study:
Research |
Subject:
Optimal design Received: 2015/03/10 | Accepted: 2015/03/10 | Published: 2015/03/10