Showing 118 results for Ph
Salahit E., Solati Hashjin M., Nemati R., Marghusian V.,
Volume 1, Issue 2 (6-2004)
Abstract
Calcium phosphate cements (CPCs), using B-tricalcium phosphate (ß-TCP, Ca3 (P04)2), dicalcium phosphate (DCP, CaHP04), calcium carbonate (Ca CO3), and hydroxylapatite (HAp, Ca10(P04)6(OH)2) as powder cement and disodium hydrogen phosphate (Na2HP04) solution as liquid component were prepared. After mixing the powder and liquid constituents, injectable and self-setting calcium phosphate cements (CPCs) were prepared with different liquid to powder ratios (UP) that formed hydroxylapatite and ß-tricalcium phosphate as the only end products, which were characterized by FTIR, XRD and SEM techniques. The results showed that, at certain concentration of Na2HP04 (6 wt%), the initial and final setting times decreased by decreasing the UP ratio.
Mir Habibi A.r., Rabiei M., Agha Baba Zadeh R., Moztar Zadeh F., Hesaraki S.,
Volume 1, Issue 3 (9-2004)
Abstract
ZnS : Cu phosphors were prepared by using laboratory grade chemicals through coprecipitating Cu along with ZnS using H2S and thiourea. Photo- and electroluminescence studies indicate that these phosphors have better emission characteristics compared to the phosphors in which activator is externally added. Phosphors with luminescence at ~530nrn were prepared. The difference between the characteristic properties of the samples seems to be due to formation of nanoparticles during the preparation of the samples by different methods.
Dehghanian C., Saremi M., Mohammadi Sabet M.,
Volume 2, Issue 1 (3-2005)
Abstract
The synergistic behavior of molybdate and phosphate ions in mitigating the corrosion of mild steel in simulated cooling water was evaluated performing potentiodynamic polarization and impedance spectroscopy tests. Phosphate and molybdate showed a synergistic effect on corrosion inhibition of steel in simulated cooling water. The observed reduction in anodic and cathodic current densities could be the consequence of incorporation of both phosphate and molybdate ions in forming a protective layer on the surface. The charge transfer resistance of the protective layer formed on steel surface was much greater in presence of both ions in solution than that when each inhibitor used alone.
Aneziris C.g., Borzov D., Schmidt G.,
Volume 2, Issue 1 (3-2005)
Abstract
Improved structures of MgO carbon bonded materials due to new binder systems and due to the application of electrical currents during operation have been achieved for advanced applications in the secondary metallurgy and during near net shape metal casting.
Dehghan Manshadi A., Zarei Hanzaki A., Golmahalleh O.,
Volume 2, Issue 2 (6-2005)
Abstract
The presence of bainite in the microstructure of steels to obtain a proper combination of strength and toughness has always been desired. The previous works however have shown that the presence of preferred bainite morphologies in the microstructure of any steel would not be readily accessible. In addition, the appearance of different bainite morphologies in the microstructure of any steel is dictated by different factors including the steel initial microstructure, austenitization characteristics, thermomechanical processing parameters and so on. Accordingly, in the present work, the effect of prior austenite grain size and the amount of austenite hot deformation on the bainite formation characteristics were investigated in 0.12C-2.5 Ni-1.2Cr steels. The results indicated that the prior austenite grain size and the amount of deformation in the austenite no-recrystallization region resulted in significant changes of the bainite formation kinetics and morphology.
Nojehdehyan H., Moztar Zadeh F., Mir Zadeh Hamid, Hesaraki S., Keyanpour-Rad M.,
Volume 2, Issue 2 (6-2005)
Abstract
The effect of addition of NaHF2 on the cement setting and the set mass has been studied as an initial step to determine how fluoride influences the characteristics of a calcium phosphate cement, consisting of tetracalcium phosphate [TTCP:Ca4 (PO4)2O] and dicalcium phosphate dihydrate [DCPD:CaHPO4.2H2O].NaHF2 [0-10% wt% of powder phase] has been dissolved in double distilled water and used as the liquid phase of the apatite cement (AC). Powder X-ray diffraction analysis and FTIR measurements revealed that fluoride was necessary in promoting the formation of the apatite phase. The setting time was decreased significantly by the addition of NaHF2from 0% to 6%, but increased resulted in the AC (8-10%). The set AC (2%) has the highest compressive strength and the lowest porosity.The dissolution rate of set AC in weak acid, pH 5.5, was decreased with the amount of added NaHF2 from 0% to 6% but increased in the set AC 8-10%.The formation of fluoroapatite in AC (6%) was provided the low solubility and good acid resistance which is necessary for dental application.SEM observation showed needle-like apatite crystal growth over particulate matrix surface, however the amount of non-reactive TTCP or DCPD particles decreased by the addition of NaHF2. The Ca/P ratio, which was determined by EDAX, increased significantly with the addition of NaHF2.
Baradari H., Amani Hamedani H., Karimi Khoygani S., Rezaei H.r., Javadpour J., Sar Poulaki H.,
Volume 3, Issue 1 (6-2006)
Abstract
Ultrafine hydroxyapatite (HAp) powders with crystallite size in the range of 10-90 nm were synthesized by chemical precipitation process using Ca(OH)2 and H3PO4 solutions as starting materials. Molar ratio of Ca/P=1.68 was kept constant throughout the process and alkaline condition for the reaction was maintained using ammonium hydroxide. The role of raw material concentration on HAp crystallite size and morphology were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. The results revealed that variations in crystallite size and morphology of synthesized HAp are strongly affected by the concentration of acid solution. To study the sintering behavior of HAp particles, the powders were pressed at 200 MPa using a uniaxial press. Sintering experiments were carried out at temperatures of 1100, 1250 and 1300°C with various soaking times at maximum temperatures. XRD was also used in determining thephases present after sintering process. The results indicated the decomposition of HAp into a-tricalcium phosphate (TCP) and b-TCP phases at 1300°C. The microstructure of the sintered HAp ceramics was characterized by SEM.
Saremi M., Motaghi Golshan B.,
Volume 3, Issue 3 (12-2006)
Abstract
A film of osteoconductive and biocompatible material on biomedical metallic implants can create bioactivity of the implant and shorten healing time. Hydroxyapatite, that is the most important mineral part of human bone, was coated on Ti6Al4V using cathodic electrode position process. Pulse electrode position technique was used and the effects of different parameters such as potential, duty cycle (on time/ (on time+ off time)), temperature and current density on the morphology of the deposits were examined. Nano size deposits were formed under controlled temperature and optimization of voltage and current density.
Abbasi S.m., Shokouh Far A., Ehsani N.,
Volume 3, Issue 3 (12-2006)
Abstract
In this study the hot deformation behaviour of a precipitation hardened (PH) stainless steel at high strain rates has been predicted through hot compression testing. Stress-strain curves were obtained for a range of strain rates from 10-3 to 10+1 S-1 and temperatures from 850 to 1150°C. Results obtained by microstructure and stress-strain curves show that at low temperatures and high strain rates, where the Zener-Holman parameter (Z) is high, work hardening and dynamic recovery occure. By increasing temperature and decreasing strain rate, the Z parameter is decreased, so that dynamic recrystallization is the dominant softening mechanism. The results were fitted using a Log Z versus Log (sinh (a sp) diagram allowing an assessment of the behavior of the stresses measured at strain rates closer to those related to the industrial hot rolling schedules. It is clearly shown that the data collected from low strain rate testing can be fairly reasonably extrapolated to higher orders of magnitude of strain rate.
H. Ghasemi, M. A. Faghihi Sani, Z. Riazi,
Volume 4, Issue 3 (12-2007)
Abstract
Abstract: The effect of phase development on peel strength of alumina-copper metalized joint has
been investigated. The alumina-copper joint was prepared in three stages. The alumina substrate
was, first, metalized at 1500°C in H2-furnace by a new formulation. In the second step, a nickel
layer was electroplated on the metalized layer with approximately 10µm thickness. Finally, copper
strips were bonded to metalized alumina with Ag-Cu (72-28) filler metal. The peel strength of the
joint was 9.5±0.5 Kg/cm which shows approximately 30% increase in comparison to previous
works. By study of fracture surface and crack propagation path, it has been concluded that this
increase is due to the formation of more spinel phase.
A. Ahmadi,, H. Sarpoolaky,, A. Mirhabibi, F. Golestani-Fard,
Volume 4, Issue 3 (12-2007)
Abstract
Abstract: Dolomite based refractories are widely used in Iranian steelmaking plants. In the
present research, wear and corrosion of refractories used in steel-making converter lining in
Esfahan Steel Company was studied. Post-mortem analysis of refractories clarified that the wear
started with oxidation of carbon followed by chemical corrosion. Iron oxide from slag reacted with
calcia, resulting in formation of low melting phase, and subsequent washout process, caused the
refractory corrosion onset from the hot face. In addition, the effect of aluminum as an anti-oxidant
and graphite on the corrosion resistance of refractory was investigated. Tar-dolomite samples
containing different amount of graphite (0, 4, 7, and 10 wt. %) were prepared in order to study
their physical properties, before and after coking. SEM micrographs employed to analyze the
microstructures to determine the effect of graphite and antioxidant on corrosion behavior of the
refractory. Results showed that oxidation process of carbon in the system was hindered and
improved corrosion resistance by introducing graphite and antioxidant into the refractory
composition.
J. Saaedi, H. Arabi, Sh. Mirdamadi, Th. W. Coyle,
Volume 5, Issue 4 (12-2008)
Abstract
Abstract: Two different coating microstructures of Ni-50Cr alloy were obtained on a stainless steel substrate by
changing combustion characteristics of a high velocity oxy-fuel (HVOF) process and the size distribution of feed
powder during coating process. Use of the finer feed powder and leaner fuel in oxygen/fuel ratio (i.e. using a ratio
much less than stoichiometric ratio) led to formation of an extremely dense coating with high oxide content. Heat
treating of this coating at 650ºC for 4 hours caused the formation of an intermetallic sigma phase having Cr7Ni3
stoichiometry. Formation of this phase has been reported occasionally in thin films not in thermal spray coatings, as
reported for the first time in this research. In addition no sigma phase was detected in the HVOF as-deposited coating
with low oxide content after heat treatment of the samples. Therefore, due to the limited number of papers available in
the subject of formation of phase in either Ni-Cr bulk alloys or coatings, it is considered appropriate to show up a
case in this field. In this work, the formation of sigma phase in Ni-50Cr coating deposited by HVOF technique and
heat treated at 650ºC was discussed and then the coating was characterized.
A.nouri, Sh.kheirandish, H. Saghafian,
Volume 5, Issue 4 (12-2008)
Abstract
Abstract: In the current work, the strain hardening behavior of dual-phase steels with different silicon content (0.34-
2.26 Wt. %) was examined using the modified Crussard-Jaoul analysis. It was shown that these dual-phase steels
deform in two stages over a uniform strain range. Each stage exhibited a different strain hardening exponent varying
with silicon content. At the first stage, work hardening exponent remind significantly constant, while during the second
stage, it decreased with increasing silicon content from 0.34% to 1.51% and then increased for the higher silicon
contents (1.51% to 2.26%). It was found that the strain hardening behavior of these steels was predominantly affected
by the volume fraction of martensite at low silicon contet and the ferrite strengthening induced by silicon at the higher
silicon content. The effect of silicon content on the volume fraction of martensite and tensile properties were also
considered.
M. Ebrahimi-Basabi,, J. Javadpour,, H. Rezaie, M. Goodarzi,
Volume 6, Issue 1 (3-2009)
Abstract
Abstract: Nano- size alumina particles have been synthesized by mechanical activation of a dry powder mixture of
AlCl3 and CaO. Mechanical milling of the above raw materials with the conditions adopted in this study resulted in
the formation of a mixture consisting of crystalline CaO and amorphous aluminum chlorides phases. There was no
sign of chemical reaction occurring during milling stage as evidenced by x-ray diffraction studies. Subsequent heat
treatment of the milled powder at 350ºC resulted in the occurrence of displacement reaction and the formation of
Al2O3 particles within a water soluble CaCl2 matrix. The effect of higher temperature calcinations on the phase
development in this powder mixture was followed by X-ray diffraction (XRD) analysis and scanning electron
microscope ( SEM). Differential thermal analysis (DTA) was used to compare the thermal behavior between the
milled and unmilled powders. Perhaps the most important result in this study was the observation of á-Al2O3 phase
at a very low temperature of 500ºC.
I. Ebrahimzadeh, Gh.h. Akbari,
Volume 6, Issue 1 (3-2009)
Abstract
Abstract: Horizontal continuous casting is widely used to produce semi-finished and finished metallic products.
Homogeneity in metallurgical characteristics and mechanical properties in such products is of importance. In the
present work microstructure and mechanical properties of a horizontal continuous cast pipe have been studied.
Microstructural features were investigated by an optical microscope equipped with image analyzer and SEM was used
to characterize precipitates. Tensile behavior, impact strength and hardness variations were the mechanical properties
which were studied. Results showed that microstructure and mechanical properties had diversities in different parts of
the pipe and distinct differences were observed between upper and lower parts of the pipe. A meaningful correlation
was found in microstructure and mechanical properties in different parts of the component.
M. J. Tafreshi1, M. Fazli2,
Volume 6, Issue 2 (6-2009)
Abstract
Abstract:
fabricated. Modifications carried out in different parts of the old system in order to control most
of the growth parameters with more accuracy. The fabricated system was used to grow sapphire
single crystals with almost 10 mm in diameter and 50 mm in length. The crystallinity and
structure of the grown crystals were characterized by computer aided single crystal X-ray
diffraction technique.
A Verneuil system, more sophisticated than a conventional one, has been designed and
A. Shokuhfar, S. Ahmadi, H. Arabi, S. Nouri,
Volume 6, Issue 3 (9-2009)
Abstract
Abstract: Guinier-Preston (GP) zone formation and precipitation behavior of T1 (Al2CuLi) phase during the ageingof an Al-Cu-Li-Zr alloy was studied by differential scanning calorimetry (DSC) technique and electrical resistancemeasurement of the samples. Results show that endothermic effects in the thermograms of the alloy between 180°Cand 240°C can be related to the enthalpy of GPzones dissolution. Formation of GPzones in the structure increasedhardness, tensile strength and electrical resistance of the Al-Cu-Li-Zr alloy. Furthermore, precipitation of T1 phaseoccurred in temperature range of 250ºC to 300ºC whereas its dissolution occurred within the temperature of 450-530ºC. Activation energies for precipitation and dissolution of T1 phase which were determined for the first time inthis research, were 122.1(kJ/mol) and 130.3(kJ/mol) respectively. Results of electrical resistance measurementsshowed that an increase in the aging time resulted in the reduction of electrical resistance of the aged samples.
Bahman Mirzakhani, Hossein Arabi, Mohammad Taghi Salehi,seyed Hossein Seyedein, Mohammad Reza Aboutalebi, Shahin Khoddam, Jilt Sietsma,
Volume 6, Issue 4 (12-2009)
Abstract
Abstract
Recovery and recrystallization phenomena and effects of microalloying elements on these phenomena are of great importance in designing thermomechanical processes of microalloyed steels. Thus, understanding and modeling of microstructure evolution during hot deformation leads to optimize the processing conditions and to improve the product properties.
In this study, finite element method was utilized to simulate thermomechanical parameters during hot deformation processes. FEM results then were integrated with physically based state variable models of static recovery and recrystallization combined with a realistic microstructural geometry. The thermodynamic software Thermo-calc was also used to predict present microalloying elements at equilibrium conditions.
The model performance was validated using stress relaxation tests. Parametric studies were carried out to evaluate the effects of deformation process parameters on the microstructure development following hot deformation of the API-X70 steel
P. Karimi, K. S. Hui, K. Komal,
Volume 7, Issue 3 (8-2010)
Abstract
Abstract:
(Y2O3) and ethyl acetate as a mineralizer by hydrothermal method at a low temperature (T=.230°C, and
P=100bars).The as-prepared powders were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared
Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), UV-V Spectroscopy and Chemical Oxygen Demand
(COD) of the sewage water, respectively. The results show that hydrothermal method can greatly promote the
crystallization and growth of YVO4 phase. XRD pattern clearly indicates the tetragonal structure and crystallanity. An
FTIR spectrum of the YVO4 shows the presence of Y-O and V-O bond, respectively. The presence of these two peaks
indicates that yttrum vanadate has been formed. UV-V is absorption spectra suggesting that YVO4 particles have
stronger UV absorption than natural sunlight and subsequent photocatalytic degradation data also confirmed their
higher photocatalytic activity.
In this paper, YVO4 powder was successfully synthesized from Vanadium Pentaoxide (V2O5), Yttrium Oxide
H. Rafiee*,, S. Rastegari, H. Arabi, M. Mojaddami,
Volume 7, Issue 4 (10-2010)
Abstract
Abstract:
activity gas diffusion process has been investigated in this research. Effects of coating temperature and aluminum
concentration in powder mixture on formation mechanism were studied using optical and scanning electron
microscopes, EDS and X-ray diffraction (XRD) techniques. For this purpose two different packs containing 1 and 2
wt% aluminum powder, were used for coating the samples at two temperatures, 850ºC and 1050ºC. The ratio of Al to
activator was kept constant in both packs. By increasing the Al content in high activity powder mixture, the
concentration of diffused Al increased in the coating layers, and the thickness of coating increased. At 1050ºC as the
rate of diffused Al to the interdiffusion zone increased, this zone gradually transformed to outer coating phases. At
850ºC coating formed by inward diffusion of Al, but at 1050ºC it was initially formed by inward diffusion of Al followed
by outward diffusion of Ni.
Formation mechanism of an aluminide coating on a nickel base superalloy IN738LC via a single step high