Showing 4 results for Nanocomposites
M. S. Mahmoudi Jozee, S. Sanjabi, O. Mirzaee,
Volume 13, Issue 3 (9-2016)
Abstract
A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs) composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate. In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.
Zainab J. Shanan, Huda M.j. Ali, H.f. Al-Taay,
Volume 19, Issue 3 (9-2022)
Abstract
The objectives of this work is to synthesize TiO2/MgO nanocomposites using a pulse laser deposition technique. At a vacuum pressure of 2.5 10-2 mBar, TiO2/MgO nanocomposites were synthesized on substrates with a laser power of 600 mJ and a wavelength of 1064 nm. This search utilizes various pulses (500, 600, and 700) at a 6-Hertz repetition rate. X-ray diffraction was utilized to investigate crystallography of the phases in the samples, as well as average crystallite size (XRD). An increase in the average crystal size was observed with an increase in the number of shots (from 35.15 to 38.08) nm at (500 to 700) shots respectively. The impact of the number of laser shots on the surface characteristics of TiO2/MgO nanocomposites was also evaluated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM). Finally, optical characteristics were evaluated using UV-Vis spectroscopy. Increasing the number of shots increased the absorbance and thus reduced the energy gap.
Pravin Jadhav, R.s.n Sahai, Deepankar Biswas, Asit Samui,
Volume 20, Issue 4 (12-2023)
Abstract
The present work deals with the effect of Multi-walled Carbon Nanotube (MWCNT) and functionalized (carboxyl and amine) MWCNT on the mechanical properties of the PAEK (Poly Aryl Ether Ketone) polymer composite. The MWCNT and functionalized (carboxyl and amine) MWCNT concentration varied as 0.25, 0.5 and 0.75 weight percentages. Compositeswere prepared by using a melt compounding method using a twin-screw extruder and all testing samples were prepared using an injection molding machine as per American Society for Testing and Materials (ASTM) standards. Samples were tested for tensile strength, impact strength, flexural strength, heat deflection temperature, hardness, and density. There is an increase in the tensile strength, impact strength, flexural strength, and heat deflection temperature, with percentage increase in filler loading up to 0.5 %, followed by decrease in it with higher filler loading. The increase is maximum for amine functionalized MWCNT.
Muhammad Shahzad Sadiq, Muhammad Imran, Abdur Rafai, Muhammad Rizwan,
Volume 21, Issue 2 (6-2024)
Abstract
With increasing energy demand and depletion of fossil fuel resources, it is pertinent to explore the renewable and eco-friendly energy resource to meet global energy demand. Recently, perovskite solar cells (PSCs) have emerged as plausible candidates in the field of photovoltaics and considered as potential contender of silicon solar cells in the photovoltaic market owing to their superior optoelectronic properties, low-cost and high absorption coefficients. Despite intensive research, PSCs still suffer from efficiency, stability, and reproducibility issues. To address the concern, the charge transport material (CTM) particularly the electron transport materials (ETM) can play significant role in the development of efficient and stable perovskite devices. In the proposed research, we synthesized GO-Ag-TiO2 ternary nanocomposite by facile hydrothermal approach as a potential electron transport layer (ETL) in a regular planar configuration-based PSC. The as synthesized sample was examined for morphological, structural, and optical properties using XRD, and UV-Vis spectroscopic techniques. XRD analysis confirmed the high crystallinity of prepared sample with no peak of impurity. The optimized GO-Ag-TiO2 ETL exhibited superior PCE of 8.72% with Jsc of 14.98 mA.cm-2 ,Voc of 0.99 V, and a fill factor of 58.83%. Furthermore, the efficiency enhancement in comparison with reference device is observed which confirms the potential role of doped materials in enhancing photovoltaic performance by facilitating efficient charge transport and reduced recombination. Our research suggests a facile route to synthesize a low-cost ETM beneficial for the commercialization of future perovskite devices.