Search published articles


Showing 2 results for Methane

Homayonifar P., Saboohi Y., Firouz Abadi B.,
Volume 2, Issue 4 (12-2005)
Abstract

Iron and steel is an energy intensive industry and its contribution to the pollution of environment is considerable. Direct reduction iron (DRI) is a major element of an iron and steel production plant. Its share in natural gas and electricity consumption of total plant is estimated to be 70% and 15% respectively. Reduction gases are produced in natural gas reforming unit and its elements are CO and H2. A major consequence of using this technology is high level of CO2 emission, which pollutes the environment. An alternative to the existing technology is utilization of H2 as reducing agent. A comparison of various hydrogen production processes indicate that thermal decomposition of methane provides an attractive option from economical and technical point of view. Therefore, a system for producing hydrogen, based on thermal decomposition technique, has been designed in the framework of the present paper.
R. Alizadeh, O. Ostrovski,
Volume 8, Issue 1 (3-2011)
Abstract

Abstract: Reduction of the Titanium dioxide, TiO2, by methane was investigated in this work. The thermodynamic of reaction was examined and found favorable. The reaction of titanium dioxide with methane was carried out in the temperature range 1150°C to 1450°C at atmospheric pressure with industrial high porosity pellets prepared from titanium dioxide powder. The evolved gas analyzing method was used for determination of the extent of reduction rate. The gas products of the reaction are mostly CO and trace amount of CO2 and H2O. The synthesized product powder was characterized by X-ray diffraction (XRD) for elucidating solid phase compositions. The effect of varying temperature was studied during the reduction. The conversion-time data have been interpreted by using the grain model. For first order reaction with respect to methane concentration, the activation energy of titanium dioxide reduction by methane is found to be 51.4 kcal/gmole. No detailed investigation of kinetic and mechanism of the reaction was reported in literatures.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb