E. Badami, M. T. Salehi, S. H. Seyedein,
Volume 11, Issue 4 (12-2014)
Abstract
Hot deformation behavior of a medium Cr/Mn Al6061 aluminum alloy was studied by isothermal compression test at temperatures range of 320 to 480 °C and strain rates range of 0.001 to 0.1 s −1. The true stresstrue strain curves were analyzed to characterize the flow stress of Al6061. Plastic behavior, as a function of both temperature and strain rate for Al6061, was also modeled using a hyperbolic sinusoidal type equation. For different values of material constant α in the range of 0.001 to 0.4, values of A, n and Q were calculated based on mathematical relationships. The best data fit with minimum error was applied to define constitutive equation for the alloy. The predicted results of the proposed model were found to be in reasonable agreement with the experimental results, which could be used to predict the required deformation forces in hot deformation processes
P.k. Jayashree, Sh. Raviraj, S.s. Sharma, G. Shankar,
Volume 15, Issue 2 (6-2018)
Abstract
CoHErrelation between weldability and improvement in properties is a key issue in materials science research. The objective of this work is to optimize the process parameters viz., aging temperature, aging time, solutionizing time, to enhance the hardness of Al6061 alloy. Hence, the present paper deals with hardness study of Tungsten Inert Gas welded 6061 aluminium alloy after age hardening under three different aging temperatures, aging time and solutionizing time using Taguchi’s L9 Orthogonal array. Finally, a second order model has been generated for hardness using Response Surface Methodology with 20 runs for full design. The predicted and experimental results are in good agreement.