Search published articles

Showing 16 results for Titanium

Barzegar Alamdarit B., Ashrafi Zadeh S.n., Ashrafi Zadeh F.,
Volume 1, Issue 2 (6-2004)

In the current research, the optimum conditions for the electrolytic deposition of TiO2 coatings on titanium pieces were experimentally investigated. Flat pieces of commercially available titanium with dimensions of 50 x20 x3 mm were used as the anode and cathode electrodes. The coatings were applied on the cathode in an electrolyte solution essentially from water and methanol, containing different amounts of TiCI4, and H202. Coatings of sufficient thickness and adequate adhesion to the substrate were obtained at the optimum conditions of theELD process. The latter conditions were electrode gap distance of 3 cm, TiCl4 concentration of 0.005M, H202 concentration of 0.1 M, current density of 35 mA/cm2, methanol/water volume ratio of 9, and pH of the electrolyte in the vicinity of 1.40. Results of XRD analysis revealed the presence of anatase crystals of titanium oxide in the coated layers, where the deposited coating was treated at some temperatures in the range of 400 to 600°C for a period of at least 2 hours. Scanning electron microscopy (SEM) pictures also confirmed the formation of a uniform coating layer with cracked suiface area. At the optimum conditions of the process coatings with thicknesses of up to 10 flm were easily obtained through the application of one to three deposited layers.
Tavakoli A. H., Goudarzi M.,
Volume 1, Issue 3 (9-2004)

The synthesis of advanced materials from low cost minerals concentrates is a new field of study that has great potential applications. In this paper, the effect of milling time on the temperature of initiation and amount of carbothermic reduction of ilmenite has been investigated. The stoichiometric molar ratio (1:4) of ilmenite to graphite was mixed and mechanically activatedfor 30-70 hours at room temperature. Then homogenized mixture heated for one hour at 1000-1400°C in coal reducing atmosphere. The results show that complete conversion of ilmenite to Fe and TiC can not be achieved in the unmilled powder at 1400°C, while with milling of mixture for 30 hours, complete reduction of ilmenite to Fe and TiC at 1400° C was observed. With increasing milling time from 30 to 70 hours the temperature of complete reduction decreases from 1400 to 1200° C. Leaching of final product in HCI 3% solution dissolve Fe but leave pure titanium carbide intact. Determination of TiC unit cell size from X-ray diffraction pattern shows that unit cell size of synthesized TiC is less than stoichiometric one, which suggests that some oxycarbide phases (TiCxO1-x), is present into the final product.
Ebrahimi A.r., Yadegari M., Khosroshahi R.a.,
Volume 3, Issue 3 (12-2006)

In this study, commercially pure titanium/304L stainless steel explosion bonded clads have been annealed under argon atmosphere over the temperature range of 700-900°C for 1h.Microstructure of the clads have been investigated before and after anealing. X-ray diffraction studies revealed that the annealing products in the form of intermetallic phases were gradually formed at the interface of the annealed clads. It was also found that, the bonding zone width increased with temperature according to an Arrhenius type equation. On the base of this equation, the activation energy of bonding zone growth was found equal to about 66.5 kJ/mol. The bond strength of the diffusion annealed clads were evaluated stress relieved. The maximum average tensile strength of ~350MPa was obtained for the as-welded clad. It was found that the bond strength decreased with annealing at 700°C due to an increase in the width of brittle intermetallic layer.
H. Fattahi, M. H. Shariat,
Volume 5, Issue 1 (3-2008)

Abstract: In chloride salt solutions, titanium alloys exhibit reasonably high pitting potentials as high as +10 V (vs. Ag/AgCl) at room temperatures. On the other hand, anodic pitting potentials are significantly lower in bromide solutions. In this study, pitting corrosion of commercially pure titanium in aqueous NaBr solution of 0.1 M concentration at room temperature was studied and the effect of an external magnetic field oriented both parallel and perpendicular to electrode surface was investigated. Cyclic potentiodynamic and potentiostatic polarization tests were carried out. Anodic breakdown potential of +1.45 V (vs. Ag/AgCl) obtained in the absence of magnetic field, decreasing to +1.11 V in the presence of a 0.05 T parallel magnetic field. The perpendicular magnetic field actually did not affect the breakdown potential. Applying of an external magnetic field, independent of its orientation, shifted the repassivation potential approximately 150 mV in the positive direction. SEM microscopy observations of sample surfaces indicated that applying of magnetic field results in some variations in the pit shapes and their sizes.
A. R. Kamali, S. M. M. Hadavi, H. Razavizadeh, J. Fahim,
Volume 5, Issue 2 (6-2008)

Abstract: Production of titanium aluminides in TiO2-Al-Ca system has been investigated. For this purpose, different compositions of raw materials were studied in a special reaction vessel. In a special case, the non-completed reaction of TiO2 with Al and Ca resulted in the production of granulates of titanium aluminides especially Ti3Al and other Ti – Al phases as the metallic product and Ca12Al14O33 as the non-metallic product. Remelting of metallic granulates led to production of TiAl ingot.
R. Khoshhal, M. Soltanieh, M. Mirjalili,
Volume 7, Issue 1 (3-2010)


titanium sheets in pure molten aluminum at 750

and X-Ray Diffraction Analysis results, TiAl

intermetallic layer thickness increases slowly at primary stages. After that an enhanced growth rate occurs due to layer

cracking and disruption. Presumably, reaction starts with solving titanium into the molten aluminum causing in

titanium super saturation and TiAl

intermetallic layer which consequently leads to TiAl

energy of intermetallic layer formation and growth was developed by measuring titanium thickness decreases.

In this work, kinetics of intermetallic compounds formation in Al-Ti system was studied by immersingoC, 850 oC and 950 oC. According to Scanning Electron Microscopy3 is the only phase can form at the interface. Observations revealed that3 formation. At this stage, growth may be controlled by aluminum diffusion through3 formation at the interface of Ti-TiAl3. Furthermore, activation

R. Alizadeh, O. Ostrovski,
Volume 8, Issue 1 (3-2011)

Abstract: Reduction of the Titanium dioxide, TiO2, by methane was investigated in this work. The thermodynamic of reaction was examined and found favorable. The reaction of titanium dioxide with methane was carried out in the temperature range 1150°C to 1450°C at atmospheric pressure with industrial high porosity pellets prepared from titanium dioxide powder. The evolved gas analyzing method was used for determination of the extent of reduction rate. The gas products of the reaction are mostly CO and trace amount of CO2 and H2O. The synthesized product powder was characterized by X-ray diffraction (XRD) for elucidating solid phase compositions. The effect of varying temperature was studied during the reduction. The conversion-time data have been interpreted by using the grain model. For first order reaction with respect to methane concentration, the activation energy of titanium dioxide reduction by methane is found to be 51.4 kcal/gmole. No detailed investigation of kinetic and mechanism of the reaction was reported in literatures.
S. Ghafurian, S. H. Seyedein, M. R. Aboutalebi, M. Reza Afshar,
Volume 8, Issue 3 (9-2011)

Abstract: Microwave processing is one of the novel methods for combustion synthesis of intermetallic compounds and
composites. This method brings about a lot of opportunities for processing of uniquely characterized materials. In this
study, the combustion synthesis of TiAl/Al2O3 composite via microwave heating has been investigated by the
development of a heat transfer model including a microwave heating source term. The model was tested and verified
by experiments available in the literature. Parametric studies were carried out by the model to evaluate the effects of
such parameters as input power, sample aspect ratio, and porosity on the rate of process. The results showed that
higher input powers and sample volumes, as well as the use of bigger susceptors made the reaction enhanced. It was
also shown that a decrease in the porosity and aspect ratio of sample leads to the enhancement of the process.
M. Ghamari, B. Mirhadi,
Volume 9, Issue 2 (6-2012)

Abstract: Glassy samples with xTiO2 .3SiO2 .Na2O composition that (8≤x≤40) (molar) were casted in refractory steel molds after melting at air as parallel palates. After polishing and getting to desire thickness, UV-VIS spectrometry in 200 -1100 nm was measured on samples. Glass density was measured by a sensitive micro balance and was found that by increasing titanium dioxide of glasses, glass density increases. Results from UV-VIS spectroscopy show that increase of titanium dioxide decreases light transmission and this value reaches zero for sample with 40 molar percent of titanium dioxide. One reason of this reduction is formation of crystalline phase in glass, in which, by increasing titanium content crystalline phase will be increased, results of X-ray diffraction and electron microscopy confirm this claim.
M. Ghavidel, S. M. Rabiee, M. Rajabi,
Volume 11, Issue 1 (3-2014)

In this study, porous titanium composites containing 5, 10 and 15 wt. % nanobioglass were fabricated by space holder sintering process. The pore morphology and phase constituents of the porous samples were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The mechanical properties were determined by compression test. The porosity of the sintered samples showed an upward trend with an increase in bioglass content. As the bioglass content was increased, the compressive strength was first increased and then decreased. The results obtained in this work suggest that the fabricated porous compact with 10 wt. % bioglass with compressive strength value of about 76.7 MPa, high porosity and good biocompatibility has the potential application for bone tissue engineering.
B Eftekhari Yekta, Sh Honarvar,
Volume 11, Issue 4 (12-2014)

The effect of titanium dioxide addition on bonding strength of CaO-P2O5 -Na 2O-TiO2glass-ceramic system was investigated as a coating on titanium substrate. Thus, different amounts of TiO2 (2, 3.5 and 5mol %) were added to the base glass batch composition. The prepared glaze slips were applied on the substrate by dip coating method, dried and then heat treated at various temperatures. After that, bonding strength of the glass- substrates was determined via shear stress testing method. The de-bonded interfaces were analyzed by scanning electron microscopy (SEM). According to these results, the 5 mol% TiO 2 containing coating showed the best bonding strength, comparing with the other coatings. The bioactivity of the coated samples was investigated by soaking them in simulated body fluid (SBF). The surface of the samples was studied using SEM and X-Ray microprobe and it was observed that an apatite layer was grown on their surface
M. Heydari Nasab, R. Naghizadeh, H. Samadi, A. Nemati,
Volume 12, Issue 1 (3-2015)

Ceramic-matrix composites containing TiC-TiN have been used in a variety of application because of their superior properties such as high hardness, good wear resistance and high chemical stability. In this research, effect of coke and coke/calcium beds in synthesis of Al 2O3-Ti(C, N) composites using alumino-carbothermic reduction of TiO 2 has been investigated. Al, TiO 2 and active carbon with additives of extra carbon and NaCl and without additives, in separate procedures, have been mixed. Afterwards, mixtures were pressed and synthesized in 1200oC for 4hrs, in coke and coke/calcium beds, separately. Al 2O3-Ti(C,N) composite was synthesized in ternary system of Al-TiO 2 -C with excess carbon and NaCl additives in calcium/coke bed in 1200 . X-ray diffraction patterns (XRD) results showed that existence of calcium in bed resulted in intensification of reduction atmosphere in samples and formation of Ti(C,N) phase enriched from carbon was accelerated. Crystallite sizes of synthesis Ti(C,N) at 1200 °C in reducing conditions were 22-28 nm.
B.y.r. Surnam, B.s. Audit, A. Soopee,
Volume 14, Issue 3 (9-2017)

In this study the use titanium and tungsten as alternatives to the noble metals in the jewellery industry was investigated. The degradation of titanium and tungsten were compared to that of gold, used as reference. Alternate immersion tests were performed in 3.5% sodium chloride and artificial perspiration. The metals’ abrasion resistance with respect to textile fabrics was determined.

In general, there is around 30% difference in pit density for titanium and tungsten as compared to that of gold. Pit depth and pit diameter showed a similar trend. From the abrasive test performed, it was observed that titanium and tungsten had insignificant changes in the surface reflectivity with time. Hence, it was deduced that titanium and tungsten products would have longer maintenance intervals than that of gold. New tools and techniques, however, would be required by jewellers to work with titanium and tungsten.  

M. R. Ghaani, P. Marashi,
Volume 15, Issue 3 (9-2018)

Na super ionic conductive (NASICON) materials are ceramics with three-dimensional scaffolds. In this study, Li1.4Al0.4Ti1.6(PO4)3 with NASICON structure was synthesized by Pechini method. As a result, a sample having a total conduction of 1.18×10-3 S cm-1 was attained. In addition, various parameters were studied to obtain high value of conductivity, by optimizing the process. The optimization was made using L16 Taguchi based orthogonal array, followed by ANOM, ANOVA and stepwise regression. As a result, the optimum synthesis parameters can be obtained, while pH of the solution was adjusted to 7. The ratio between the concentration of citric acid to metal ions and ethylene glycol concentration stuck to 1 and 2.5, respectively. The best heat treatment can be carried out with a combination of pyrolysis at 600 ºC and sintering at 1000 ºC. 
Milad Hooshyar, Maryam Torshabi, Maryam Kazemi,
Volume 20, Issue 2 (6-2023)

Titanium implants are one of the most durable and conventional orthopedic and dental implants. The goal of this research is to improve the bio-compatibility of these implants by implementing nano coating of titanium oxide nanotubes (TNT) to enhance bone graft on the implant surface, and reduction of wound healing duration and risk of implant surgery at the same time. For this purpose, the effects of dimension and atomic structure of titanium oxide nanotubes are examined on the surface properties and biological performance and tried to introduce an optimum status of this nano-tubular structure. TNTs were synthesized by anodizing method on the surface of titanium sheets. Dimensions of TNT can be controlled by anodizing process parameters. Heat treatment affects the atomic structure of TNTs. Contact angle measurement as one of the important surface properties was investigated on different dimensions and structures of TNTs, to study human blood's physical interaction with the implant surface. In addition, the quality and quantity of bone material sediment on the surface were examined by SBF test and SEM analysis. Finally, cell culture provided informative data on bone cells' response to these nanotubular coatings by analyzing MTT results and SEM photography of cells. As a result, the optimum dimension and atomic structure of TNTs were defined and the required process parameters were introduced to obtain this state. This setup can be used as an optimum state of TNT as a nano coating on titanium implant with orthopedic functions to enhance the cell adhesion and acquire the highest proliferation rate which means faster bone graft and shorter convalescence.
Alireza Zibanejad-Rad, Ali Alizadeh, Seyyed Mehdi Abbasi,
Volume 21, Issue 2 (6-2024)

Pressureless sintering was employed at 1400 °C to synthesize Ti matrix composites (TMCs) reinforced with in-situ TiB and TiC reinforcements using TiB2 and B4C initial reinforcements. The microstructure and wear behavior of the synthesized composites were evaluated and compared and the results showed that B4C caused the formation of TiB-TiC in-situ hybrid reinforcements in the Ti matrix. Also, TiB was in the form of blades/needles and whiskers, and TiC was almost equiaxed. Moreover, the volume fraction of the in-situ formed reinforcement using B4C was much higher than that formed using TiB2. In addition, although the hardness of the B4C-synthesized composites was higher, the composite synthesized using 3 wt.% TiB2 exhibited the highest hardness (425 HV). The wear test results showed that the sample synthesized using 3 wt.% TiB2 showed the lowest wear rate at 50 N, mainly because of its higher hardness. The dominant wear mechanism in the samples synthesized using 3 wt.% B4C was abrasive and delamination at 50 N and 100 N, respectively while in the samples synthesized 3 wt.% TiB2, a combination of delamination and adhesive wear and adhesive wear was ruling, respectively.


Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb