Search published articles


Showing 4 results for Tensile Properties

A. Khakzadshahandashti, N. Varahram, P. Davami, M. Pirmohammadi,
Volume 16, Issue 3 (9-2019)
Abstract

The combined influence of both melt filtration and cooling rate on the microstructure features and mechanical properties of A356 cast alloy was studied. A step casting model with five different thicknesses was used to obtain different cooling rates. The effect of melt filtration was studied by using of 10 and 20 ppi ceramic foam filters in the runner. Results showed that secondary dendrite arm spacing decreased from 80 μm to 34 μm with increasing cooling rate. Use of ceramic foam filters in the runner led to the reduction of melt velocity and surface turbulence, which prevented incorporation of oxide films and air in the melt, and consequently had an overall beneficial effect on the quality of the castings. A matrix index, which is the representative of both SDAS and microporosity content, was defined to consider the simultaneous effect of melt filtration and cooling rates on UTS variations. Also, the fracture surface study of test bars cast using 10 and 20 ppi ceramic foam filters showed features associated with ductile fracture.
 
Zahra Rousta, Esmaeil Tohidlou, Hamed Khosravi,
Volume 18, Issue 1 (3-2021)
Abstract

This study deals with the effects of erbium (Er) addition on the microstructural evolution and tensile properties of Al-Mg2Si in-situ metal matrix composites. The morphology of primary Mg2Si and eutectic phases were observed in details using optical microscope and scanning electron microscopy (SEM). The results showed that the increase of Er content has a slight effect on the size and morphology of primary Mg2Si phases, but the eutectic structure evolves from the coarse structure into the fine one. Also, with Er addition the eutectic mixtures of Al and Mg2Si with fibrous morphology has been developed instead of the flake like Al-Mg2Si eutectic microstructure. Meanwhile, Al3Er phase was observed in the samples containing Er. The ultimate tensile strength (UTS) of the composite changes under the various content of Er. The maximum strength was found at the 0.6 wt% Er with the fine eutectic microstructure. The study of SEM micrographs from the fracture surface of composites revealed that Er addition changes the fracture mode from brittle to ductile one with fine dimples. The mechanism of microstructural evolution was discussed in details.
Reza Soleimani Gilakjani, Seyed Hossein Razavi, Masoumeh Seifollahi,
Volume 18, Issue 1 (3-2021)
Abstract

Niobium addition is an appropriate approach for improvement of superalloy’s operation. The purpose of this study is twofold: (1) to investigate on the η and γ/ phase precipitations along with (2) to identify the high-temperature tensile properties in A286 and Nb-A286, as a modified type. The heat treatment of both alloys was carried out in a two-stage aging procedure at 760°C for 16 h and 820°C for 2 to 30 hours, following characterized by optical and Scanning electron (SEM-EDS) microscopies, differential thermal analysis (DTA) and high temperature tensile tests. The results showed that niobium addition was increased the volume fraction of γ/ phase, from 10.7% to 12%, decreased its size, from 94 to 71 nm, and rising the γ/-dissolution temperature from 987°C to 1007°C. Moreover, the γ/ to η phase transformation was sluggishly occurred in Nb-A286 due to more stable of γ/ precipitations. Furthermore, the Nb-A286 alloy demonstrates higher mechanical properties than A286 one, approximately 100MPa improvement, which it was contributed to the much large volume fraction and finer size of more stabilized γ/ phase.
 
Mitra Ghannadi, Hediye Hosseini, Bagher Mohammad Sadeghi, Bahman Mirzakhani, Mohammad Tahaaha Honaramooz,
Volume 18, Issue 3 (9-2021)
Abstract

The objective of the present paper is to investigate the effects of rapid heating and cryogenic cooling on on the microstructure and tensile properties of Al-Cu-Mg. The specimens were subjected to three heat treatment cycles in which the Infrared heating (IR) were used as the heating medium at the ageing stage, and the liquid nitrogen and water were used as the quenching mediums. The ageing temperature and time were 190⁰C and from 2 hours to 10 hours, respectively.The results indicated that by using IR at the ageing stage, the hardening rate enhanced because the rapid heating via this method leads to faster diffusion of the alloying elements. Moreover, the high density of nano-sized precipitates formed during ageingleads to higher strength and suitable ductility. Cryogenic treatment showed a negligible effect on both microstructure and tensile properties; however, it improved ductility. Overall, the combination of a high heating rate and cryogenic treatment led to the highest mechanical properties. SEM micrograph of the fracture surface of alloy demonstrated that in Cryogenic treatment+Artificial Ageing (CAA) condition, the surface had been fully covered by deep dimples in contrast to the Cryogenic treatment+Infrared Heating (CIR) and Water-Quench+ Infrared Heating (QIR) conditions which their dimples were shallow and also some facets were observed.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb