Showing 10 results for Diffusion
Mehryab A., Arabi H., Tamizifar M., Seyedein S.h., Razazi M.a.,
Volume 2, Issue 1 (3-2005)
Abstract
In this research, the mechanism of joining three sheets of metals, i.e. brass-steel-brass, by cold roll welding process has been studied. For this purpose, the two surfaces of steel sheets were roughened with stainless steel wire brush by different amounts, then the brass sheets were put on both sides of the steel sheets, before they were subjected to cold roll process. During rolling, peaks of the asperities on the surfaces of the steel sheet were pressurized, i.e. deformed, much more than that of trough. Hence, more hardening due to formation of higher dislocation density in the peaks regions were detected in comparison to the trough regions. Therefore, due to the differences in the amounts of work hardening occurred during cold rolling in the peaks & trough of the scratches and also due to the nature of the rough surfaces of the steel sheets, which causes the smooth surface of soft brass sheets laied over the rough surface of the steel sheet to be shappend according to the profile of the steel sheet scratches during cold rolling, mechanical locking occurred at the interface of brass & steel sheets. In addition, while the extrusion of brass took place through cracks within the surface of hardend peaks and metal bonding occurred on the contact points of the brass sheet & the vergin steel. Therefore, it seems two mechanisms were in operation is making a suitable joining between the sheets. One was a locking mechanism due to the roughness of the steel sheets & the other was bonding mechanism due to the bonding between the peak points of the scratches &soft brass surface. The strength of the bonded points in the interface were later increased by annealing the composite, so that by annealing the samples within the 500-900°C range for aperiod of 1 1/2 hr the interface strength increase substantially. The results of peeling test indicated that the interface strength of the samples annealed at 700°C or more increased so much that the brass sheet toms during peeling & the fracture did not pass through the interface.
A. Zakeri,, M. Sh. Bafghi, Sh. Shahriari,
Volume 4, Issue 3 (12-2007)
Abstract
Abstract: In this paper, kinetics of reductive leaching of manganese dioxide ore by ferrous ion in
sulfuric acid media has been examined. Experimental results show that increasing temperature
from 20 to 60 °C and decreasing ore particle size from −16+20 to −60+100 mesh considerably
enhance both the dissolution rate and efficiency. Molar ratios of Fe2+/MnO2 and H2SO4/MnO2 in
excess to the stoichiometric amounts were needed for successful manganese dissolution. Under the
optimum condition (ore particle size of −60+100 mesh, Fe2+/MnO2 molar ratio of 3.0,
H2SO4/MnO2 molar ratio of 2.0) manganese could be extracted with over 95% efficiency by 20
minutes leaching at room temperature. A kinetic analysis based on dimensionless time method
showed that shrinking core – ash diffusion control model fits the experimental results reasonably
well. Value of activation energy was found to be 28.1 kJ/mole for the proposed mechanism.
H. Rafiee*,, S. Rastegari, H. Arabi, M. Mojaddami,
Volume 7, Issue 4 (10-2010)
Abstract
Abstract:
activity gas diffusion process has been investigated in this research. Effects of coating temperature and aluminum
concentration in powder mixture on formation mechanism were studied using optical and scanning electron
microscopes, EDS and X-ray diffraction (XRD) techniques. For this purpose two different packs containing 1 and 2
wt% aluminum powder, were used for coating the samples at two temperatures, 850ºC and 1050ºC. The ratio of Al to
activator was kept constant in both packs. By increasing the Al content in high activity powder mixture, the
concentration of diffused Al increased in the coating layers, and the thickness of coating increased. At 1050ºC as the
rate of diffused Al to the interdiffusion zone increased, this zone gradually transformed to outer coating phases. At
850ºC coating formed by inward diffusion of Al, but at 1050ºC it was initially formed by inward diffusion of Al followed
by outward diffusion of Ni.
Formation mechanism of an aluminide coating on a nickel base superalloy IN738LC via a single step high
M. Soltanieh, M. Kiani, M. Hasheminiasari,
Volume 14, Issue 2 (6-2017)
Abstract
- The mechanism of diffusion layer growth in plasma nitrided coatings applied on a St52 steel using an active screen is investigated. The nitriding was performed at 450,500 and 550 ◦C temperature nitriding times of 5, 10 and 15 h, in a gas mixture containing 20 vol. % H2: 80 vol. % N2 and DC-pulsed plasma nitriding unit.
The surface, cross section and the thickness of diffusion of specimens was studied in terms of optical and scanning electron microscopy. According to the measurements of diffusion layer thickness, values of Q and D0 for nitrogen diffusion in substrate were calculated as 50585 (j/mol) and 4.11×10-10 (m2/s)respectively. The variations of depth of hardness during nitriding period was determined
E. Shahmohamadi, A. Mirhabibi, F. Golestanifard,
Volume 16, Issue 3 (9-2019)
Abstract
An accurate prediction of reaction kinetics of silicon nitridation is of great importance in designing procedure of material production and controlling of reaction. The main purpose of the present study is to investigate the effect of temperature on the kinetics of reaction bonded silicon nitride (RBSN) formation. To achieve this, nitrogen diffusion in the silicon nitride layer is considered as a reaction controlling factor and sharp interface method based on this theory is used to develop the analytical model. In the developed model, the variations in the size of silicon particles are calculated for the whole reaction. In the experimental phase, the extent of nitridation is measured for different reaction temperatures and 4 different reaction times and then, the occurrence of full nitridation is shown by EDS analysis. Furthermore, an analytical approach was established for describing the kinetics of compound formation and the performance of the developed model is evaluated through statistical analysis. There was good agreement between experimental data and predictions of the developed model which demonstrates the accuracy of considered presumptions and reaction mechanisms. An accurate prediction of reaction kinetics of silicon nitridation is of great importance in designing procedure of material production and controlling of reaction. The main purpose of the present study is to investigate the effect of temperature on the kinetics of reaction bonded silicon nitride (RBSN) formation. To achieve this, nitrogen diffusion in the silicon nitride layer is considered as a reaction controlling factor and sharp interface method based on this theory is used to develop the analytical model. In the developed model, the variations in the size of silicon particles are calculated for the whole reaction. In the experimental phase, the extent of nitridation is measured for different reaction temperatures and 4 different reaction times and then, the occurrence of full nitridation is shown by EDS analysis. Furthermore, an analytical approach was established for describing the kinetics of compound formation and the performance of the developed model is evaluated through statistical analysis. There was good agreement between experimental data and predictions of the developed model which demonstrates the accuracy of considered presumptions and reaction mechanisms.
R. Latifi, S. Rastegari, S. H. Razavi,
Volume 16, Issue 4 (12-2019)
Abstract
In the present study, Zirconium modified aluminide coating on the nickel-base superalloy IN-738LC was first created by high activity high temperature aluminizing based on the out-of-pack cementation method. Then, Zr coatings were applied to simple aluminide coatings by sputtering and heat treatment in order to study the effect of Zr on the coating microstructure and oxide spallation. Microstructural studies were conducted by using scanning electron microscopy (SEM), Energy Dispersive X-ray Spectrometry (EDS), and x-ray diffraction (XRD) microanalysis. The results indicated that zirconium modified aluminide coating, like aluminide coating, has a two-layer structure including a uniform outer layer of NiAl and an interdiffusion layer in which zirconium is in a form of solid solution in the coating. Furthermore, the 300nm Zr-coated NiAl demonstrated an excellent scale adhesion, a slow oxidation rate and lower amounts of some other elements such as Ti and Cr in its oxide layer leading to a pure aluminide oxide layer.
R. Kumar, Y. Chandra Sharma, V. Vidya Sagar, D. Bhardwaj,
Volume 17, Issue 2 (6-2020)
Abstract
In this study an effort has been made for the plasma ion nitriding (PIN) of Inconel 600 and 601 alloys at low temperatures. After plasma ion nitriding, microstructure study, growth kinetics of nitrided layer formation and wear properties were investigated by various characterization techniques such as; scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, micro-hardness measurement and wear test by pin on disk technique. It was found that, surface micro-hardness increases after PIN process. A mix peak of epsilon (ε) phase with fcc (γ) phase was detected for all temperature range (350 0C to 450 0C), while the chromium nitride (CrN) phase was detected at elevated temperature range ~450 0C in inconel 601 alloy. The calculated values of diffusion coefficient and activation energy for diffusion of nitrogen are in accordance with the literature. Volume loss and wear rate of the plasma nitrided samples decreases, but it increases as PIN process temperature increases.
Rabah Bobaaya, Omar Allaoui, Mokhtar Djendel, Samir Benaniba,
Volume 18, Issue 3 (9-2021)
Abstract
Coatings based on chromium borides and chromium carbides are commonly employed in applications requiring mechanical performance, such as high hardness and low friction coefficient, as well as corrosion resistance. In this work, we made layers of chromium borides and chromium carbides on the surface of low carbon steel through some specific treatments. For chromium borides, the boriding treatment in a solid medium at 900 °C for 4 hours followed by chromium electroplating on the steel surface and finally the application of annealing treatment at temperatures at 950 °C for 1 and 2 hours. For chromium carbides, the cementation in a solid medium followed by electroplating of chromium on the surface and finally the application of annealing treatment at temperatures between 500 and 1100 °C for 1 hour. The obtained results show that, in the first case, boron diffusion and chromium deposition lead to chromium borides on the treated surface. Similarly, for the second case, the cemented layer and the chromium deposited on the surface combine to form chromium carbides on the treated surface after annealing. The characteristics of the chromium borides and chromium carbides obtained are very similar to those of chromium borides and chromium carbides obtained by other processes.
Nouar Sofiane Labidi,
Volume 19, Issue 1 (3-2022)
Abstract
The synthesed foam-shaped zeolite ZSM-5 material w:::as char:::acterized by X-ray diffraction (XRD), (FTIR) spectroscopy, scanning electron microscopy (SEM) and BET technique. The adsorption performances of the material were evaluated for the basic blue-41 dye removal. A maximum removed amount of 161.29 mg/g at 323K was achieved. Experimental kinetic data of this new adsorbent fitted well the pseudo-second order model. The apparent diffusion coefficient values was in the range of 10-12 cm2/s. The regeneration tests revealed that the adsorption efficiency of the foam-shaped zeolite was retained after three regeneration runs, with a loss of 6% of the original adsorbed value.
Bakhrom Abdulazizov,
Volume 21, Issue 4 (12-2024)
Abstract
In this work, the effect of variation of the non-ideality coefficient of the p-n-junction volt-ampere (I-V) characteristic located in the strong microwave field on the differential resistance, diffusion capacitance and differential conductance is studied. Here, it is shown that the p-n junction I-V characteristics increases with the value of the non-ideality coefficient, whether the differential resistance is in a strong microwave field or a weak microwave field. Diffusion capacitance and differential conductance are shown to decrease with increasing value of non-ideality coefficient.