Search published articles

Showing 2 results for Micro-Hardness

Seyyed Masood Bagheri , Jamal Zamani, Ali Mehdipour Omrani,
Volume 6, Issue 4 (12-2009)

Abstract: The purpose of this study is to produce scarf joint through explosive welding process (EXW). The scarf weld is a process in which the final bond interface is oblique. With applying the explosive welding technique, this joint can create a metallic bond between similar or dissimilar metals. In this study, chamfered end of aluminum and copper plates were joined explosively and named scarf joint, employing changes in chamfered angle at different stand-off distance and explosive loading. The geometry of scarf joint enables consideration of both flyer and base plate thickness and explosive loading and the effects on mechanical properties of interface such as bond shear strength and micro-hardness can be investigated. Mathematical models developed for the interface properties of scarf joint to make relationship between the bond shear strength and explosive loading ratio. To check the adequacy of developed models, mechanical properties of interface, such as bond shear strength, predicted and compared with actual values in explosive cladding process. The results show reasonable agreement with theoretical predictions. Consequently, mathematical model which is based on scarf joints, can predict bond shear strength of cladding metals under desired explosive loading and flyer plate thickness
R. Kumar, Y. Chandra Sharma, V. Vidya Sagar, D. Bhardwaj,
Volume 17, Issue 2 (6-2020)

In this study an effort has been made for the plasma ion nitriding (PIN) of Inconel 600 and 601 alloys at low temperatures. After plasma ion nitriding, microstructure study, growth kinetics of nitrided layer formation and wear properties were investigated by various characterization techniques such as; scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, micro-hardness measurement and wear test by pin on disk technique. It was found that, surface micro-hardness increases after PIN process. A mix peak of epsilon (ε) phase with fcc (γ) phase was detected for all temperature range (350 0C to 450 0C), while the chromium nitride (CrN) phase was detected at elevated temperature range ~450 0C in inconel 601 alloy. The calculated values of diffusion coefficient and activation energy for diffusion of nitrogen are in accordance with the literature. Volume loss and wear rate of the plasma nitrided samples decreases, but it increases as PIN process temperature increases.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb