Search published articles

Showing 8 results for Mechanical Activation

Tavakoli A. H., Goudarzi M.,
Volume 1, Issue 3 (9-2004)

The synthesis of advanced materials from low cost minerals concentrates is a new field of study that has great potential applications. In this paper, the effect of milling time on the temperature of initiation and amount of carbothermic reduction of ilmenite has been investigated. The stoichiometric molar ratio (1:4) of ilmenite to graphite was mixed and mechanically activatedfor 30-70 hours at room temperature. Then homogenized mixture heated for one hour at 1000-1400°C in coal reducing atmosphere. The results show that complete conversion of ilmenite to Fe and TiC can not be achieved in the unmilled powder at 1400°C, while with milling of mixture for 30 hours, complete reduction of ilmenite to Fe and TiC at 1400° C was observed. With increasing milling time from 30 to 70 hours the temperature of complete reduction decreases from 1400 to 1200° C. Leaching of final product in HCI 3% solution dissolve Fe but leave pure titanium carbide intact. Determination of TiC unit cell size from X-ray diffraction pattern shows that unit cell size of synthesized TiC is less than stoichiometric one, which suggests that some oxycarbide phases (TiCxO1-x), is present into the final product.
S.h.r. Fatemi Nayeri, J. Vahdati Khaki, M. R. Aboutalebi,
Volume 6, Issue 1 (3-2009)

Abstract:A combination of mechanical activation and Differential Thermal Analysis (DTA) together with X-Ray Diffraction (XRD), and various microstractural characterization techniques were used to evaluate the starting reaction in the combustion synthesis of TiC-Al2O3 composite in TiO2-Al-C system. The mechanical activation was performed on the mixtures of two components of TiO2/Al, Al/C and TiO2/C and then the third component was added according to the stoichiometric reaction for 3TiC+2Al2O3 composite formation. The powder mixtures were heated up to 1450 °C under Argon atmosphere at a heating rate of 10 °C/min. The combustion synthesis temperature was observed to decrease from 962 °C to 649 °C after milling of TiO2/Al mixture for 16 hr. On the contrary, the mechanical activation of Al/C and TiO2/C mixtures for 16 hr made the reaction temperature increase to 995 °C and 1024 °C, respectively. The decrease in reaction temperature as a result of milling the TiO2/Al mixture could be due to an increase of TiO2 and Al interface area as confirmed by TEM micrographs and XRD patterns of milled powder mixture. In addition, DTA experiments showed that for the sample in which TiO2 and Al were mechanically activated the reaction occurred at the temperature even lower than that of Al melting point.
Javad Bahrami, Mohammad Hossein Paydar, Nader Setoudeh, Mohammad Hossein Shariat,
Volume 6, Issue 4 (12-2009)


  The effect of mechanical activation using an attrition mill on the particle size of an ilmenite concentrate and its effect on the ability of the concentrate for Iron separation during hydrochloric acid leaching and the kinetics of the dissolution process have been investigated. It was observed that mechanical activation in an attritor significantly enhances the dissolution of iron in hydrochloric acid while have a slight effect on dissolution of titanium. With the mechanically activated ilmenite using an attrition mill, leaching conversion at 90 oC reached to 80%. The kinetic data of leaching of mechanically activated ilmenite was found to follow shrinking core model. Mechanically activating ilmenite using the attrition mill was found to cause the activation energy of leaching to be decrease from 43.69 , found for samples leached without mechanically activated, to 18.23 . Bafghi, A.h. Emami, A. Zakeri, J. Vahdati Khaki,
Volume 7, Issue 2 (6-2010)


has been investigated. It has been shown that the mechanism of leaching reaction is diffusion through the product layer

and does not undergo any change as a result of mechanical activation in a wide range of experimental conditions.

Leaching rate is strongly influenced by milling intensity and the effect of ball to powder mass ratio is stronger than

milling time. Curve fitting of experimental data shows that leaching rate constant is approximately a linear function

of ball to powder mass ratio, while it obeys a power function with regard to the milling time.

The kinetics of chalcopyrite leaching in a ferric sulfate media for raw and mechanically activated samples

S. Niksirat, Sh. Raygan, S. Moradi Ghiassabadi,
Volume 12, Issue 2 (6-2015)

In this research, two different carbonaceous materials (Graphite:G and Petrocoke:P) were separately compared in terms of the carbothermic reduction of hematite and anatase in order to synthesize Fe-TiC nanocrystalline composite by mechanically activated sintering method. Powders were activated in a planetary high-energy ball mill under argon atmosphere for 0, 2, 5, 10,and 20 h. Then, the activated powders were analyzed by XRD and SEM to investigate phase constituents and microstructure of the mixtures. Results proved that Fe 2 O 3 and TiO 2 were not reduced by carbonaceous materials even after 20h of milling. SEM investigations showed that G-mixture was more homogenous than P-mixture after 20h of milling, meaning that graphite-anatase-hematite was mixed satisfactorily. Thermogravimetry analysis was done on 0 and 20h milled powders. TG and DTG curves showed that mechanical activation led to almost 300°C decrease in the reduction temperature of hematite and anatase in both mixtures. In the next step, the powders were sintered in a tube furnace under argon atmosphere. In the G-mixture, anatase was reduced to titanium carbide at 1100°C but, in the P-mixture, temperature of 1200°C was essential for completely reducing anatase to titanium carbide.Results of phase identification of the sintered powders showed that anano-crystalline ironbased composite with titanium carbide, as the reinforcement was successfully synthesized after 20 h high-energy milling of the initial powders and subsequent sintering occurred at 1200˚C for 1h
E. Mohammadi, M. Pourabdoli,
Volume 16, Issue 2 (6-2019)

The effect of mechanical activation on the kinetics of ammoniacal thiosulfate leaching of a refractory oxide gold ore containing 2.8 ppm Au was investigated. The gold extraction of 99.81% was achieved by 16 h leaching of a sample mechanically activated for 60 minutes. The gold extraction observed for a similar reference sample without mechanical activation was only 55%. Studies revealed that leaching progresses at two different rates depending on the leaching time (0-2 h and 2-16 h). It was observed that diffusion through an ash layer as a dominant mechanism controls the leaching of samples mechanically activated up to 45 minutes during total leaching time, while reaction control and liquid film diffusion are dominant mechanisms for leaching of a sample mechanically activated for 60 minutes during 0-2 h and 2-16 h, respectively. The extraction observed during the ash diffusion step depends significantly upon mechanical activation time.  Mechanical activation of 60 minutes results in high gold extraction in this step which when combined with subsequent chemical reaction gives close to 100% gold extraction in a 16 hour leach.  Mechanical activation for up to 45 minutes leads to a modest improvement in overall gold extraction compared with the reference test without mechanical activation

A. Hasanvand, M. Pourabdoli, A. Ghaderi,
Volume 17, Issue 1 (3-2020)

The main problem of cobalt oxide as a thermochemical heat storage material is its slow re-oxidation kinetics. In addition, redox (reduction and oxidation) behavior of as-received Co3O4 is degraded with increasing the number of redox cycles. To overcome this drawback, Al2O3 and Y2O3 were added to Co3O4 and  effect of mechanical activation time (2, 4, 8, and 16 h) on the redox behavior (weight change value/rate, redox reversibility, reduction and re-oxidation values, and particle morphologies) of Co3O4-5 wt.% Al2O3 and Co3O4-5 wt. % Y2O3 composites was investigated using thermogravimetry method. The composites were studied by SEM, EDS, and X-ray map analyses before and after redox reactions. Results showed that increasing the mechanical activation time improves the redox kinetics of Co3O4-5wt. % Al2O3 in comparison with as-received Co3O4. Although, the alumina-containing samples, activated in short time showed the better redox kinetics than samples activated in long time. It was found that increasing the activation time to more than 8 h for alumina-containing samples reduces the redox kinetics due to decreasing the positive effect of Al2O3 in controlling the particle size growth and sintering. In the case of Co3O4-5wt. % Y2O3, an increase in activation time generally reduced the redox kinetics. As a result, redox reactions in a 16 h-activated Co3O4-5wt.% Y2O3 composite was completely stopped. In addition, results showed that weak performance of Co3O4-5 wt. % Y2O3 is related to intensive sintering and growth of cobalt oxide particles during redox reactions

Mojtaba Hosseini, Ali Allahverdi, Mohammad Jaafar Soltanian Fard,
Volume 19, Issue 1 (3-2022)

The aim of the present research work is to evaluate the feasibility of processing and utilizing steel slag
in binary and ternary cement blends with limestone. The physical and microstructural properties of binary and
ternary composite cements produced by inter-grinding mixtures of ordinary Portland cement clinker, processed
steel slag and limestone in a laboratory ball mill with replacement levels varying from 0 wt.% to 30 wt.% were
studied. The effects of processed steel slag and limestone incorporation on density of dry cement mixes and water
consistency, setting time and volume stability of fresh and hardened cement pastes were investigated. Also,
density, water absorption, total open pore volume (%) and compressive strength of cement mortars were measured.
The mix with 15 wt.% limestone and 15 wt.% processed steel slag was selected as a typical ternary cement mix
for complementary studies including X-ray diffractometry, thermal gravimetry, Fourier-transform infrared
spectroscopy, and scanning electron microscopy analyses. The results show that removal of relatively high
metallic content of steel slag increases its grindability for mechanical activation and improves its hydraulic
properties effectively and makes it suitable for being recycled in cement industry. The results show that
mechanical activation of the cement mixes enhances the poor hydraulic activity of the processed steel slag and
compensates the strength loss to some extent. The physical and chemical properties of all studied composite
cement mixes comply with ASTM standard specifications, except the compressive strength of the cement mixes
at 28-days containing 20 wt.% or higher amounts of limestone ground to the relatively low Blaine specific surface
area of about 3000 cm2/g.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb