Search published articles


Showing 47 results for Coating

Mir Habibi A.r., Mir Habibi A.r., Mir Habibi A.r.,
Volume 1, Issue 1 (3-2004)
Abstract

The continuity and thickness of the coating layer, are the most important factors in wetting properties and strength of carbon fibers. These factors are crucial in the quality of metal matrix composites made with carbon fibers. In this research the Polyacrylonitrail base carbon fibers have been nickel coated with 0.2, 0.5, 0.8 and 11 ,u in thickness, by the electroless method. The effect of the thickness of nickel coating on surface condition and also the tensile strength of the carbon fibers has been investigated. The study of surface condition of the coated carbon fibers by SEM showed that the nickel coating at the thickness of about 0.5 pin has the best continuity oil the carbon fibers. The results of tensile tests of carbon fibers coated with different thickness of nickel showed that increasing the thickness of coating layer decreases the overall strength of fibers.
Arabi H., Rastegari S., Mohammad-Sadeghi B.,
Volume 1, Issue 1 (3-2004)
Abstract

In this research, effects of changes in aluminizing conditions on microstructure of Pt - aluminide coating applied oil a Ni - base superalloy GTD -111, has been studied. A thin layer (i.e.68,#mm ) of Pt was electroplated onto the surface of the .samples, and then they were aluminized by pack cementation technique under various conditions of time, temperature, rate of heating and pack powder compositions In addition, by application of a thin Ni layer on the substrate before applying Pt, the source of nickel available for diffusing into Pt layer during aluminizing process enhanced and the need for an extra heat treatment cycle before aluminizing process was practically omitted. Addition of a nickel layer, also prevented scaling of Pt layer during its electroplating and aluminizing processes that helps enhancement of cohesiveness of the coated layers.The general microstructure of the coating consisted of four layers, which are PtA12layer internal diffusion layer external diffusion layer and interdiffusion zone. The structure of each layer has been studied by optical and scanning electron microscopes as well as XRD technique.The results show the presence of the original Pt - electroplated layer had no effect on the thicknesses of the coating layers, but higher aluminizing time and temperature had increased the thicknesses of interdiffusion and internally diffused layers. In addition, at high temperature, aluminizing with a lower heating rate caused an increase in the thickness of internal diffusion layer. Aluminizing with a lower heating rate at high temperature (more than 900°C) had increased the thickness of interdiffusion laver Attempt has been made to justify , the changes occurred in microstructures and thick nesses of various coating layers as they exposed to different aluminizing conditions.
Barzegar Alamdarit B., Ashrafi Zadeh S.n., Ashrafi Zadeh F.,
Volume 1, Issue 2 (6-2004)
Abstract

In the current research, the optimum conditions for the electrolytic deposition of TiO2 coatings on titanium pieces were experimentally investigated. Flat pieces of commercially available titanium with dimensions of 50 x20 x3 mm were used as the anode and cathode electrodes. The coatings were applied on the cathode in an electrolyte solution essentially from water and methanol, containing different amounts of TiCI4, and H202. Coatings of sufficient thickness and adequate adhesion to the substrate were obtained at the optimum conditions of theELD process. The latter conditions were electrode gap distance of 3 cm, TiCl4 concentration of 0.005M, H202 concentration of 0.1 M, current density of 35 mA/cm2, methanol/water volume ratio of 9, and pH of the electrolyte in the vicinity of 1.40. Results of XRD analysis revealed the presence of anatase crystals of titanium oxide in the coated layers, where the deposited coating was treated at some temperatures in the range of 400 to 600°C for a period of at least 2 hours. Scanning electron microscopy (SEM) pictures also confirmed the formation of a uniform coating layer with cracked suiface area. At the optimum conditions of the process coatings with thicknesses of up to 10 flm were easily obtained through the application of one to three deposited layers.
Karaminezhaad M., Maghsoudi A.a., Nozhati R., Sakhaei A.,
Volume 1, Issue 4 (12-2004)
Abstract

A large number of reinforced concrete structures subjected to chloride ions. Two basicapproaches for preventing corrosion of reinforcing steel embedded in concrete are: Increasing theconsolidation of concrete and using different coating on rebars. In present research steel rebarsare coated in different ways: a) 40 µm of zinc electroplated on steel rebar b) Zinc powder withepoxy paste (zinc rich). The rebars were placed in a macrocell design according to ASTM G109-92. Concrete operations were done with mixture designs of high and normal strength concrete.The results show corrosion decrease of zinc coated rebars.
Pakshir M., Amini R.,
Volume 2, Issue 1 (3-2005)
Abstract

Anodes are critical component of cathodic protection systems. As part of this effort, three different anodes were tested in a cathodic protection system that was designed and constructed to prevent further corrosion of reinforced concrete. This anodic system includes an electrically conductive coating composition applied in fluid form over an outer surface of the concrete mix. The composition further includes a predetermined amount of electrically conductive carbon material (coke, carbon black, graphite) uniformly distributed in the epoxy resin (as a binder) whereby the coating composition has a predetermined value of resistively. This investigation attempts to find the best type and optimum content of conductive carbon filler in poxy coating, to ensure optimal anode working parameters for marine environments (basically marine and sewer environments) and if any of the coating systems tested in this study excel over the other. In this study, electric and electrochemical parameters of three layer (with average coating thickness of 300µm) coke-epoxy, carbon black-epoxy and graphite-epoxy conducting paints (with different amount of filler) have been determined during long-term anodic polarization (70 days) in a seawater solution. During this test, on the basis of impedance measurements, the electrical resistances of these coatings have been calculated every 14 days. if conductive paints exhibit good electric and electrochemical stability, they will be attractive for cathodic protection of reinforced concrete.
Golazar M.a., Mostaghimi J., Coyle T.w.,
Volume 3, Issue 1 (6-2006)
Abstract

Partially stabilized zirconia (PSZ) has been proven to be an excellent candidate as a thermal barrier coating (TBe) for hot sections in, for instance, heat or internal combustion engines and gas turbine parts. The main functions of these coatings are reducing heat losses, reducing fuel consumption, increasing efficiency, and extending durability and life. One of the main problems involved is wear behavior in the development of such coatings for these applications. Using the air plasma spraying (APS) technique, conventional and nanostructured 8 wt % yttria partially stabilized zirconia (Y-PSZ) coatings were deposited on austenitic stainless steel (AISI304) disc-shaped substrates. The coated substrates were subjected to pin-on-disc wear tests, using 10 mm silicon nitride and zirconia balls as the pin. The coefficient of friction was recorded in real time. The weight loss of coated substrates was measured. Coatings were characterized before and after being subjected to wear testing by various techniques including optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction (XRD). Effects of various experimental parameters such as wear distance, test temperature, and counter face material were also investigated. Results obtained revealed that, regardless of experimental conditions applied, the nanostructured zirconia coating shows better wear and tribological properties than that of the conventional one.
M. Kazemi Pour, S. Sharafi,
Volume 5, Issue 1 (3-2008)
Abstract

Abstract: Hardfacing is one of the most useful and economical ways to increase the service life of components subjected to abrasive wear. Iron based hardfacing alloys have long been considered as candidate coatings for wear-resistant applications in industry. In the present work two layer of Fe-34Cr-4.5C%wt hardfacing alloy was deposited on ASTM A36 carbon steel plates by SMAW method. The microstructure consists of large primary and eutectic M7C3 carbides, metastable austenite and small amount of secondary carbides. The microstructure was analyzed by optical and scanning electron microscopes. In the same condition of size, shape, distribution and volume fraction of carbides the as-welded matrix changed to martensite, tempered martensite and ferrite by heat treatment processes. The wear resistance was measured by pin-on-disk method under loads of 5, 10 and 20N and for sliding distance of 1500m. The results showed that the as-welded sample with austenitic matrix has the most and the ferritic matrix specimen has the least wear resistance. The predominate mechanisms for mass losses were determined to be micro-cutting, microploughing.
J. Saaedi, H. Arabi, Sh. Mirdamadi, Th. W. Coyle,
Volume 5, Issue 4 (12-2008)
Abstract

Abstract: Two different coating microstructures of Ni-50Cr alloy were obtained on a stainless steel substrate by changing combustion characteristics of a high velocity oxy-fuel (HVOF) process and the size distribution of feed powder during coating process. Use of the finer feed powder and leaner fuel in oxygen/fuel ratio (i.e. using a ratio much less than stoichiometric ratio) led to formation of an extremely dense coating with high oxide content. Heat treating of this coating at 650ºC for 4 hours caused the formation of an intermetallic sigma phase having Cr7Ni3 stoichiometry. Formation of this phase has been reported occasionally in thin films not in thermal spray coatings, as reported for the first time in this research. In addition no sigma phase was detected in the HVOF as-deposited coating with low oxide content after heat treatment of the samples. Therefore, due to the limited number of papers available in the subject of formation of phase in either Ni-Cr bulk alloys or coatings, it is considered appropriate to show up a case in this field. In this work, the formation of sigma phase in Ni-50Cr coating deposited by HVOF technique and heat treated at 650ºC was discussed and then the coating was characterized.
S. Zavareh, F. Majedi,, M. Sh. Sharif, F. Golestanifard,
Volume 6, Issue 3 (9-2009)
Abstract

Abstract: Multiwalled carbon nanotubes (MWCNTs) were coated with MgO nano particles using simple precipitationmethod. The growth of Mg(OH)2particles was controlled by adjusting the alkaline concentration, salt concentrationand feed rate in simple precipitation method. The nanometer-sized Mg(OH)2particles were precipitated on the surfaceof functionalized MWCNTs by reaction between MgSO4 solution and NH4OH. The samples have been characterizedby scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction and thermal gravimetricanalysis. The results showed a nominally complete MgO coating over the entire outer surface of MWCNTs resulting inimprovement of their oxidation durability.


A.m. Rashidi, A. Amadeh,
Volume 7, Issue 2 (6-2010)
Abstract

Abstract:

nanocrystalline nickel samples with the grain size of ~25 nm were prepared via direct current electrodeposition and

aluminized for different durations by pack cementation method at 500

means of SEM, EDS and XRD techniques. According to results, short time aluminizing resulted in the formation of a

single aluminide layer whereas at long duration two distinct aluminide layers were formed. The growth kinetics of the

coating was non-parabolic at short times while it obeyed the parabolic law at long duration. The parabolic growth

rate constant of single phase coating formed on electrodeposited samples was about 30 ìm / h1/2 approximately 3 times

greater than the data reported for coarse grained nickel (8.4 ìm / h1/2). Meanwhile, the overall growth rate constant

was decreased to 11.7 ìm / h1/2, when double aluminide layers formed on nanocrystalline nickel.

In this research, aluminizing behavior of ultra fine-grained nickel was investigated. For this purpose,oC. The aluminide layers were examined by

Z. Ghaferi, K. Raeissi, M. A. Golozar,, A. Saatchi, S. Kabi,
Volume 7, Issue 4 (10-2010)
Abstract

Abstract:

current densities. Electrochemical impedance spectroscopy (EIS) results showed that the codeposition mechanism of

tungsten in Ni-W deposition is the reduction of tungsten oxide which changed to the reduction of tungsten-containing

ion complexes at higher current densities. In Co-W electrodeposition, the tungsten codeposition takes place via

reduction of tungsten oxide, although, the role of tungsten-containing complexes at higher current densities cannot be

ruled out. The surface morphology of Ni-W coatings was crack-free and was strongly dependent on deposition current

density. In addition, higher grain size and lower tungsten content were obtained by increasing the current density. In

Co-W coatings, no obvious variation in surface morphology was observed except for the fine cracks appeared at

higher current densities. In this system the grain size remained almost constant with increasing current density. The

microhardness values of Ni-W and Co-W coatings decreased due to the increase in the grain size and/or decrease in

tungsten content.

Ni-W and Co-W alloy nanocrystalline coatings were electrodeposited on copper substrate at different

N. Eslami Rad*, Ch. Dehghanian,
Volume 7, Issue 4 (10-2010)
Abstract

Abstract: Electroless Nickel (EN) composite coatings embedded with Cr2O3 and/or MoS2 particles were deposited to combine the characters of both Cr2O3 and MoS2 into one coating in this study. The effects of the co-deposited particles on corrosion behavior of the coating in 3.5% NaCl media were investigated. The results showed that both Ni-P and Ni-P composite coatings had significant improvement on corrosion resistance in comparison to the substrate. Codeposition of Cr2O3 in coating improved corrosion characteristic but co-deposition of MoS2 decreased corrosion resistance of the coating.
P. Samadi, M. Reza Afshar, M. R. Aboutalebi, S. H. Seyedein,
Volume 9, Issue 1 (3-2012)
Abstract

Electrochemical coating processes are significantly affected by applied magnetic fields due to the generation of electromagnetic forces. The present research work has been undertaken to study the effect of coating parameters such as current density and alumina concentration on the characteristics of Ni-Al2O3 composite coating under static magnetic field. Ni-Al2O3 composite coating was applied on a mild steel substrate using conventional Watts solution containing Al2O3 particles with and without magnetic field. The coating microstructure and Al2O3 particle density in the coating layer were examined by scanning electron microscopy (SEM). It was found that the applied magnetic field made the coating structure finer and leads to the increases of the particle content in the coating. However, the results confirmed that the magnetic forces inversely affected the particle density in the coating at higher current density than that of normal coating process.


Mr. Hossein Minouei, Dr. Mohammadhossein Fathi, Dr. Mahmood Meratian, Mr. Hossein Ghazvinizadeh,
Volume 9, Issue 3 (9-2012)
Abstract

ASTM F-75 Cobalt-base alloy castings are widely used for manufacturing orthopedic implants. This alloy needs both homogenization and solutionizing heat treatment after casting, as well as bioactivation of the surface to increase the ability of tissue bonding. In this study, ASTM F-75 Cobalt-base substrate was heat treated at 1220°C for 1 hour in contact with Hydroxyapatite-Bioglass powder in order to solutionize and homogenize the microstructure and promote surface bioactivation. For bioactivity evaluation, heat treated specimens were immersed in Simulated Body Fluid (SBF). Surface of specimens before and after the immersion was analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and X-Ray Diffraction (XRD). Results showed an appropriate microstructure with bioactive layer on the surface of specimens after heat treatment. In vitro result and formation of bone-like apatite layer on specimens indicated that heat treated samples were potentially suitable for bone replacement and tissue regeneration under highly loaded conditions.
M. Alzamani, A. Shokuhfar, E. Eghdam, S. Mastal,
Volume 10, Issue 1 (3-2013)
Abstract

Abstract:In the present research, SiO2–TiO2 nanostructure films were successfully prepared on windshields using the sol–gel technique for photocatalytic applications. To prevent the thermal diffusion of the sodium ions from the glass to TiO2 films, the SiO2 layer was pre-coated on the glass by the sol–gel method. The substrates were dipped in the sol and withdrawn with the speed of 6cm/min-1 to make a gel coating film. The coated films were dried for 2 days at 27 °C to allow slow solvent evaporation and condensation reactions due to rapid sol–gel reaction of Titania precursor. Then, the films were annealed at 100 °C for 30min and at the final temperature (500, 700 °C) for 30 min continuously. The structure and surface morphology properties, which are as a function of annealing temperature, have been studied by SEM FE-SEM and XRD. The FE-SEM surface morphology results indicate that the particle size increases from 19 to 42 nm by increasing the annealing temperature from 500 °C to 700 °C. Likewise, XRD illustrate the crystal anatase and rutile as main phases for TiO2-SiO2 films annealed at 500 °C and 700 °C respectively. This procedure resulted in transparent, crack-free SiO2–TiO2 films.
H. Arabi, S. Rastegari, V. Ramezani, Z. Valefi,
Volume 10, Issue 2 (6-2013)
Abstract

The objectives of this research were to find an economical way of reducing porosities in the microstructure of coatings deposited by flame spraying technique on CK45 steel and also trying to increase their cohesive strength to the substrate, so that the overall wear properties of this type of coating can be improved. So several specimens from this steel coated with NiCrBSi powder under specific conditions were subjected to various furnace heat treatment at 1000, 1025, 1050, 1075 and 1100 °C, each for periods of 5, 10 and 15 minute before cooling them in air. Tribological properties of treated coatings were evaluated by pin on disc method. The results show the highest wear resistance and microhardness values observed in one of the sample was due to lower amount of porosity and higher amount of very fine Cr2Ni3B6 particles precipitated homogeneously throughout its microstructure during specific heat treatment.
M. Bahamirian, Sh. Khameneh Asl,
Volume 10, Issue 3 (9-2013)
Abstract

In the present study NiCrAlY bond coating layer was produced by electroplating against common atmospheric plasma spraying (APS). Both types of the bond coats were applied on IN738LC base metal then, the YSZ (ZrO2-8% Y2O3) thermal barrier top layer was coated by atmospheric plasma spray technique. Hot corrosion is one of the main destructive factors in thermal barrier coatings (TBCs) which come as a result of molten salt effect on the coating–gas interface. In this investigation the hot corrosion behavior of coatings was tested in the furnace which was contain Na2SO4-55% V2O5 and mixed salts environment at 900°C up to 15 hr. dwell time. Optical microscopy, scanning electron microscopy (SEM / EDS) and X-ray diffraction analysis (XRD) was used to determine the crystallographic structure and phase transformation of the coatings before and after the hot corrosion tests. The transformation of tetragonal Zirconia to monoclinic ZrO2 and formation of YVO4 crystals as hot corrosion products caused the degradation of mentioned TBCs. The results showed NiCrAlY coated by economical electroplating method a viable alternative for common thermals sprayed bond coats in hot corrosive environments with same corrosion behavior
S.r. Allahkaram, H. Mazaheri,
Volume 11, Issue 3 (9-2014)
Abstract

Ni-P Electroless coatings provide appropriate resistance to wear and corrosion. Co-deposition of particles between layers can improve their properties, especially general corrosion and erosion-corrosion behavior by means of nano diamond as reinforcing particles. In this study Ni-P/nano diamond composite deposition were deposited on steel substrate. Structure of the coatings and corrosion resistance of theme were investigated by scanning electron microscopy and corrosion tests in salty media. The composite structure of the deposit was evaluated as nano size without using any surfactants. Also results for the composite coating show better corrosion protection and higher hardness comparing with as -deposited Ni-P. The optimum concentration of diamond nanometer particles were found by evaluation of scanning electron microscopy pictures, hardness measurement, linear polarization and electrochemical impedance spectroscopy results
M. Azizi, M. Soltanieh,
Volume 11, Issue 3 (9-2014)
Abstract

In the present research, to form niobium carbide coating on the surface of AISI L2 steel Thermo-Reactive Deposition method (TRD) in a molten bath was used. Niobium carbide coating treatment was carried out at 1173 K, 1273 K, and 1373 K for 2, 4, and 8 hours. The molten bath contained 20wt.% borax (Na2B4O7), 5 wt.% boric acid (B2O3), and 75 wt.% ferro-niobium. The presence and properties of the coated layer were studied by means of Optical Microscopy (OM), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD) analysis. The thickness of coating ranged between 6.6 µm to 33µm depending on treatment time, and temperature. The effects of treatment time and temperature on the coating thickness were studied. Kinetic study of the formation of NbC coating showed that growth of the coating is under the control of diffusion. The activation energy of the process was estimated to be 122 kJ/mol. A practical formula to estimate the coating thickness was suggested.
B Eftekhari Yekta, Sh Honarvar,
Volume 11, Issue 4 (12-2014)
Abstract

The effect of titanium dioxide addition on bonding strength of CaO-P2O5 -Na 2O-TiO2glass-ceramic system was investigated as a coating on titanium substrate. Thus, different amounts of TiO2 (2, 3.5 and 5mol %) were added to the base glass batch composition. The prepared glaze slips were applied on the substrate by dip coating method, dried and then heat treated at various temperatures. After that, bonding strength of the glass- substrates was determined via shear stress testing method. The de-bonded interfaces were analyzed by scanning electron microscopy (SEM). According to these results, the 5 mol% TiO 2 containing coating showed the best bonding strength, comparing with the other coatings. The bioactivity of the coated samples was investigated by soaking them in simulated body fluid (SBF). The surface of the samples was studied using SEM and X-Ray microprobe and it was observed that an apatite layer was grown on their surface

Page 1 from 3    
First
Previous
1
 

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb