Search published articles

Showing 3 results for Akbarzadeh

M. Akbarzadeh, A. Shafyei, H. R. Salimijazi,
Volume 12, Issue 1 (march 2015 2015)

In the present study, CrN, TiN and (Ti, Cr)N coatings were deposited on D6 tool steel substrates. Physical and mechanical properties of coatings such as microstructure, thickness, phase composition, and hardness were evaluated. Phase compositions were studies by X-ray diffraction method. Mechanical properties were determined by nano-indentation technique. The friction and wear behaviour of the coatings were investigated using ball-on-disc tests under normal loads of 5, 7 and 9 N at sliding distance of 500 m, at room temperature. Scanning electron microscope equipped with energy dispersive spectroscopy, optical microscope, and 2D/3D profilometry were utilized to investigate the microstructures and wear mechanisms. Wear test results clarified that the wear resistance of (Ti, Cr)N and TiN coatings was better than that of CrN coating. The wear resistance of the (Ti, Cr)N coatings was related to the Ti content in the coatings and reduced by decreasing the Ti content. The dominant wear mechanisms were characterized to be abrasive and tribochemical wear

S. Akbarzadeh, S.r. Allahkaram, S. Mahdavi,
Volume 15, Issue 2 (June 2018)

Tin-Zinc alloy coatings have many applications because of their unique properties such as corrosion resistance, solderability and flexibility. In this study, the effect of current density, temperature and pH on chemical composition, cathodic current efficiency, morphology and structures of the coatings was investigated. The results illustrated that, at low current densities (<0.5 mA/cm2), the coatings were relatively pure tin, but Zn content increased with enhancing the current density. At higher currents a relatively pure Zn film was obtained. Temperature and pH also affected chemical composition of the alloy films. Zn content of the coatings was decreased by increasing the temperature, while its variation with pH had ascending-descending trend. Morphological investigation of the coatings revealed that increasing Zn content of deposits led to porous, rough and fine grained films.

M. Akbarzadeh, M. Zandrahimi, E. Moradpur,
Volume 16, Issue 2 (June 2019)

Molybdenum disulfide (MoS2) is one of the most widely used solid lubricants. In this work, composite MoSx/Ti coatings were deposited by direct-current magnetron sputter ion plating onto plain carbon steel substrates. The MoSx/Ti ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the coatings were explored using an energy dispersive analysis of X-ray (EDX), Xray diffraction (XRD), and nano indentation and scratch techniques. The tribological behavior of the coatings was investigated using the pin-on-disc test at room temperature. With the increase of doped titanium content, the crystallization degree of the MoSx/Ti composite coatings decreased. The MoSx/Ti coatings showed a maximum hardness of 13 GPa at a dopant content of 5 at% Ti and the MoSx/Ti composite films outperformed the MoSx films. Moreover, the films exhibited a steady state friction coefficient from 0.13 to 0.19 and the main wear mechanisms of the MoSx/Ti coating in air were abrasive, adhesive, and oxidation wear.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb