Mohammad Javad Sohrabi, Hamed Mirzadeh, Saeed Sadeghpour, Reza Mahmudi,
Volume 20, Issue 4 (12-2023)
Abstract
Deformation-induced α΄-martensite generally forms at shear bands in the coarse-grained austenite, while it nucleates at grain boundaries in the ultrafine-grained (UFG) austenite. The available kinetics models are related to the nucleation on the shear band intersections, and hence, their application to investigating the kinetics of α΄-martensite formation for the UFG regime cannot be justified. Accordingly, in the present work, the general Johnson–Mehl–Avrami–Kolmogorov (JMAK-type) model was implemented for comparing the kinetics of α΄-martensite formation in the UFG and coarse-grained regimes using an AISI 304L stainless steel. On the experimental front, the X-ray diffraction (XRD) patterns and the electron backscattered diffraction (EBSD) maps were used for phase and microstructural analyses, respectively. It was revealed that the simple JMAK-type model, by considering the dependency of the volume fraction of α΄-martensite on the strain, is useful for modeling the experimental data, predicting the nucleation sites based on the theoretical Avrami exponents, and characterizing the transformation kinetics at low and high strains.
Ali Hosseinian Naeini, Seyed Ali Hosseini Moradi,
Volume 20, Issue 4 (12-2023)
Abstract
The growth of industries, populations, and industrial activities includes environmental pollutants. Pollution causes problems such as reduced light transmission, anaerobic conditions, and complications such as allergies and cancer for humans and other living organisms. The adsorption method is one of the most attractive, and efficient methods for removing environmental pollutants such as pharmaceuticals. Among the standard methods for wastewater treatment, adsorption is more efficient than other methods and is more economical. They have a meager price. Adsorption of pollutants can be an excellent way to remove toxic substances from polluted waters and industrial effluents. In this review, pharmaceutical removal by adsorption process was reviewed in details.
Sara Ahmadi, Reza Momeni,
Volume 20, Issue 4 (12-2023)
Abstract
The polymer modified cementitious tile adhesives are very significant in construction sector. In order to considerably improve the bond qualities of the tile adhesive in polymer modified mortars, the proportions of constituent ingredients should be carefully selected. Consequently, to design high performance tile adhesives, interactions between all the components, such as the adhesion mechanisms between the polymers film and the substrate and the effect of various additives should be recognized. The effect of vinyl acetate ethylene (EVA), high alumina cement (HAC), and additives such as calcium formate and polycarboxylate on the adhesion qualities of ceramic tile adhesive was explored in this study. The findings indicated that these ingredients had an impact on the mortars' adhesive properties, and it is necessary to find their optimal amounts in order to achieve the maximum adherence. The results showed that the tensile strength of mortar was increased with increasing the polymer amounts. A microstructural analysis revealed that the polymer was distributed homogenously throughout the mortar. The optimum amount of the used high alumina cement was determined 3 wt.%. Additionally, increasing the amount of accelerator and super plasticizer increased the tensile strength of ceramic tile adhesive by approximately 20-30%.
Majid Tavoosi,
Volume 21, Issue 0 (3-2024)
Abstract
The present study focuses on the phase and structural features of MnAl intermetallic compound during solid-state synthesis. In this regard, the milling process was done in differentMn50+xAl50-x (0<x<7.5)powder mixtures and the prepared samples were evaluated using X-ray diffractometer, scanning and transmission electron microscopy, differential thermal analysis and vibrating sample magnetometer. The results showed that the τ-MnAl magnetic phase with L10 structure could not be formed during the milling and low temperature annealing. During milling process, Al atoms dissolve in Mn network and a single β-Mn supersaturated solid solution (SSSS) form. The β-Mn (SSSS) phase is unstable and transforms into the icosahedral quasi-crystal as well as γ2-Al8Mn5 and β-Mn stable phases during subsequent annealing.
Ahmad Ostovari Moghaddam, Olga Zaitseva, Sergey Uporov, Rahele Fereidonnejad, Dmitry Mikhailov, Nataliya Shaburova, Evgeny Trofimov,
Volume 21, Issue 0 (3-2024)
Abstract
High entropy intermetallic compounds (HEICs) are an interesting class of materials combining the properties of multicomponent solid solutions and the ordered superlattices in a single material. In this work, microstructural and magnetic properties of (CoCuFeMnNi)Al, (CoCuFeMnNi)Zn3, (FeCoMnNiCr)3Sn2, (FeCoNiMn)3Sn2 and Cu3(InSnSbGaGe) HEICs fabricated by induction melting are studied. The magnetic properties of the HEICs was determined mainly by the nature of the magnetic momentum of the constituent elements. (CoCuFeMnNi)Al and (CoCuFeMnNi)Zn3 displayed ferromagnetic behavior at 5 K, while indicated linear dependency of magnetization vs. magnetic (i.e. paramagnetic or antiferromagnetic state) at 300 K. The magnetization of (FeCoMnNiCr)3Sn2, (FeCoNiMn)3Sn2 and Cu3(InSnSbGaGe) HEICs at 300 K exhibited a nearly linear dependency to magnetic field. Among all the investigated samples, (CoCuFeMnNi)Al exhibited the best magnetic properties with a saturation magnetization of about Ms = 6.5 emu/g and a coercivity of about Hc = 100 Oe.
Dipali Potdar, Sushant Patil, Yugen Kulkarni, Niketa Pawar, Shivaji Sadale, Prashant Chikode,
Volume 21, Issue 1 (3-2024)
Abstract
The Nickel tungsten (Ni-W) alloy was electrodeposited on stainless steel (SS) substrate using potentiostatic mode at room temperature. Potentiostatic electrodeposition was carried out by varying the deposition time. The physicochemical properties of Ni-W alloys were studied using X-Ray diffraction (XRD), Electron Microscopy and micro-Raman spectroscopy. Recorded XRD spectra was compared with standard JCPDS card and the presence of Ni was confirmed, no such peaks for W were observed. Further study was extended for micro-Raman analysis. From Raman spectroscopy study the appearance of Ni-O and W6+=O bonds confirms that the Ni-W present in amorphous phase. Several cracks were observed in SEM images along with nanoparticles distributed over the electrode surface. The appearance of cracks may be correlated with the in-plane tensile stresses, lattice strains and stacking faults and may be related to the substrate confinements.
Yugen Kulkarni, Niketa Pawar, Namrata Erandole, Muskan Mulani, Mujjamil Shikalgar, Swapnil Banne, Dipali Potdar, Ravindra Mane, Smita Mahajan, Prashant Chikode,
Volume 21, Issue 1 (3-2024)
Abstract
The paper investigates the solar photodegradation of Methylene Blue dye using copper oxide (CuO) thin films synthesized by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The structural, morphological, and optical characteristics of the CuO thin films have been investigated by employing a variety of methods, such as Fourier transform Infrared (FTIR) spectroscopy, UV-Vis spectroscopy, Scanning electron microscopy (SEM), and X-ray diffraction (XRD). The outcomes showed that CuO thin films with excellent surface shape and a highly crystalline nature had been successfully deposited. Methylene Blue was subjected to solar radiation during its photodegradation process, and the outcomes showed a significant decrease in the dye's concentration over time. To maximize the photo degradation process, the effects of other experimental factors were also assessed, such as the starting concentration of MB, the quantity of CuO thin film, number of SILAR cycles and the pH of the solution. Good photocatalytic activity is demonstrated by CuO thin films produced using the SILAR approach in the solar photodegradation of methylene blue. The development of affordable and ecologically friendly wastewater treatment technology that can use sun energy to break down persistent organic contaminants is affected by these findings.
Avinash Ramteke, Pradnya Chougule, Pranali Chavan, Amit Yaul, Gourav Pethe,
Volume 21, Issue 1 (3-2024)
Abstract
Nickel doped CoMn ferrites with high magnetization were synthesized by double sintering solid state route with compositions of Co0.7-xNixMn0.3Fe2O4 with x = 0, 0.05, 0.1 and 0.15. Theoretical Cation distribution for cubic spinel ferrites was suggested on basis of electrical configuration expectations and cation site preferences. Cation distribution suggested was in good agreement with experimental results obtained from VSM and XRD. Values of theoretically calculated magnetic moment, coercivity and magnetization are in good agreement with experimental data obtained from VSM. Maximum saturation magnetization of 37.7emu/gm is obtained for sample Co0.7Mn0.3Fe2O4 at magnetic field of 5K Oe. Magnetostriction was found to increase with increasing magnetic field (from 1KOe to 5KOe.) Maximum magnetostriction of 84ppm was observed for sample Co0.7Mn0.3Fe2O4 at 5KOe. Maximum magnetization of magnetoelectric composites with 30% Co0.7-xNixMn0.3Fe2O4 – 70% PbZr0.48Ti0.52 was found to be 7.4 emu/g for composition with x = 0.
Risa Suryana, Nida Usholihah, Markus Diantoro,
Volume 21, Issue 2 (6-2024)
Abstract
Modifying photo-anode structures in DSSC devices is still challenging in improving efficiency. This study focused on the ZnO rod growth on several porous silicon substrates using the hydrothermal method and determining which porous silicon is appropriate for DSSC applications. The materials used for the growth solution were Zn(NO3)26H2O 0.05 M and C6H12N4 0.25 M. The hydrothermal process was carried out at 90°C for 6 h and then annealed at 450°C for 30 min. SEM revealed that PSi pore influences the structure, diameter, and density of ZnO rods. ZnO structures formed in ZnO rods with a dominant vertical growth direction, ZnO rods with an intersection direction, and flower-like ZnO rods. The diameter of the PSi pore affected the density of ZnO rods grown on the PSi. The average diameter size and the density of ZnO rods vary from 747.66-1610.68 nm and 0.22-0.90 rod/μm2. XRD confirmed the presence of ZnO hexagonal wurtzite, Si cubic, and SiO2 monoclinic. UV-Vis spectrometry characterization results showed that sample reflectance was influenced by ZnO rod density and PSi pitch. The larger density of ZnO rods and the smaller pitch of the PSi pore will lead to lower reflectance. In addition, band gap values were obtained in the 3.06-3.75 eV range. FTIR identified the existence of a ZnO vibration bond, indicating that ZnO was successfully grown on all PSi substrates. The ZnO rods grown on P15S1180 are expected to have more appropriate properties among all five samples for DSSC photoanode.
Seyed Farzad Dehghaniyan, Shahriar Sharafi,
Volume 21, Issue 2 (6-2024)
Abstract
Mechanical alloying was employed to synthesize a nanostructured alloy with the chemical formula of (Fe80Ni20)1-xCrx (x= 0, 4). The microstructural and magnetic properties of the samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and a vibrating sample magnetometer (VSM). Additionally, theoretical calculations were performed using density functional theory (DFT) under the generalized gradient approximation (GGA). Simulations have demonstrated that an appropriate quantity of chromium (Cr) can dissolve within the BCC-Fe (Ni) structure, resulting in a favorable enhancement of the magnetic moment of the lattice. The XRD results indicated that after 96 hours of milling, Fe (Ni) and Fe (Ni, Cr) with a body-centered cubic (BCC) structure were formed. With increasing milling time, the grain size decreased while the microstrain increased. The saturation magnetization (Ms) of Fe80Ni20 composition increased up to 32 hours of milling, but further milling (up to 96 h) resulted in a decrease in the saturation magnetization However, for the (Fe80Ni20)96Cr4 powders, milling up to 64 h caused a reduction in Ms. The coercivity (Hc) trend was different and increased with longer milling times (up to 96 h) for both compositions.
Dewi Qurrota A'yuni, Hadiantono Hadiantono, Velny Velny, Agus Subagio, Moh. Djaeni, Nandang Mufti,
Volume 21, Issue 3 (9-2024)
Abstract
Rice husk carbon by-product from the industrial combustion is a promising source to produce a vast amount of activated carbon adsorbent. This research prepared rice husk-activated carbon adsorbent by varying the concentration of potassium hydroxide solution (5, 10, 15, 20 % w/v) and activation time (2, 4, 6, 8 hours). Fourier-transform infrared spectral characterization (FTIR) indicated a significant effect before and after activation, especially the presence of hydroxyl groups. Based on the iodine adsorption, the specific surface area of the produced-activated carbon was approximately 615 m2/g. Experimental results showed that increasing potassium hydroxide concentration and activation time increases the water vapor adsorption capacity of the activated carbon. Compared with the rice husk carbon, the KOH-activated carbon enhanced the water vapor adsorption capacity to 931%. In the adsorption observation, changing the temperature from 15 to 27 ℃ caused a higher water vapor uptake onto the activated carbon. Two adsorption kinetics (pseudo-first- and pseudo-second-order models) were used to evaluate the adsorption mechanism. This research found that rice husk-activated carbon performed a higher water vapor adsorption capacity than other adsorbents (silica gel, zeolite, and commercially activated carbon).