Search published articles


Showing 8 results for Subject: Coatings and Corrosion Phenomenon

Mohammad Roostaei, Hossein Aghajani, Majid Abbasi, Behzad Abasht,
Volume 19, Issue 3 (9-2022)
Abstract

This study investigates the synthesis of Al/MoS2 nanocomposite coating by the electro spark deposition (ESD) method for its lubricating properties. ESD method was selected because it is a very easy, rapid, and cost-saving method and the resulting coating has a strong bonding with the substrate. As a substrate, a Ti-6Al-4V alloy sheet containing 6.12 % Al, 4.06 % V, 0.19% Fe, and 0.05 % Ni was used. For coating, an aluminum-molybdenum disulfide composite electrode in the form of a cylindrical rod was employed. Three frequencies of 5, 8, and 11 kHz, three current limits of 15, 25, and 35 amps, and three duty cycles of 50, 60, and 70% were used in the coating operation. AFM analysis was used to study the topography, morphology, and calculate roughness. The samples were then subjected to hardness tests. To determine the wear resistance of the samples, pin on disk tests were performed. XRD analysis was performed to identify the phases on the surface of the coated samples. SEM was used to examine the microstructure of the coating before and after wear testing, in order to determine the wear mechanism. The results indicated that the Al/MoS2 nanocomposite coating was synthesized on the substrate surface. The hardness of the reference sample is 353 Vickers, and that of the coated samples is about 200 Vickers. For the reference sample, the roughness was measured at 15.7 nm, and for the coated sample at 268.1 nm. As spark energy increased, the coefficient of friction increased by approximately 0.09. As spark energy increased, the wear rate increased by 27%. A significant increase in the Lancaster coefficient occurred around 5 joules of energy. According to the wear rate results, the sample with the lowest thickness wears 4% less than the sample with the highest thickness. The wear rate of sample 351170 is 78% lower than that of sample 150550.
Erfan Lotfi-Khojasteh, Hassan Elmkhah, Meisam Nouri, Omid Imantalab, Arash Fattah-Alhosseini,
Volume 19, Issue 4 (12-2022)
Abstract

This paper aims to study the tribological and electrochemical properties of the CrN/AlCrN nano-layer deposited on H13 tool steel. Arc physical technique was employed to deposit multilayer coating. X-ray diffraction technique, thermionic and field emission scanning electron microscopy and energy dispersive spectroscopy have been used to determine the characteristics of the samples. To study the samples' wear behavior, coating adhesion, and surface hardness, reciprocating wear test, Rockwell-C test, and microhardness Vickers tester were employed, respectively. The measured values of the coefficient of friction and the calculated wear rates showed that the CrN/AlCrN multilayer coating has a much higher wear resistance than the uncoated sample. The coefficient of the friction of the coated sample was 0.53 and that of the uncoated sample was 0.78. Moreover, the wear rate of the coated H13 steel was about 127 times lower than the bare H13 steel sample. The results obtained from electrochemical impedance spectroscopy and polarization tests demonstrated that the corrosion current density of the H13 steel sample was 8 μA/cm2 and that of the CrN/AlCrN multilayer-coated sample was 3 μA/cm2. In addition, the polarization resistance of the treated and the substrate specimens was estimated at 4.2 and 2.7 kΩ.cm2, respectively.
Mozhgan Hirbodjavan, Arash Fattah-Alhosseini, Hassan Elmkhah, Omid Imantalab,
Volume 19, Issue 4 (12-2022)
Abstract

The principal goal of this research is to produce a CrN/Cu multilayer coating and a CrN single-layer
coating and also compare their electrochemical and antibacterial behavior. In this investigation, the coatings were
applied to the stainless steel substrate by cathodic arc evaporation a sub-division of physical vapor deposition
(CAE-PVD). The present phases were characterized and the thickness of the coatings was measured using X-ray
diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. Rockwell-C tester was
used to evaluate the adhesion quality. Also, to evaluate the mechanical properties of the coatings such as modulus
of elasticity and hardness, a nanoindentation test was used and the indentation effect and coating topography were
evaluated using atomic force microscopy (AFM). Studying the electrochemical behavior of the coatings was done
using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) tests in Ringer's
solution. The results of EIS tests showed that the CrN coating had higher polarization resistance in comparison to
the CrN/Cu coating and an increasing trend of polarization resistance related to both coatings was identified by
rising the time of immersion. Also, using the PDP curves, the CrN and CrN/Cu coating current densities were
estimated at 1.835×10-8 and 2.088×10-8, respectively. The antibacterial activity of CrN and CrN/Cu coatings was
evaluated by the spot-inoculation method. The results of the antibacterial test indicated that compared to CrN
coating, CrN/Cu coating had a better impact on the control of the bacteria growth.
Jashanpreet Singh, Rana Gill, Satish Kumar, S.k. Mohapatra,
Volume 19, Issue 4 (12-2022)
Abstract

In this paper, an investigation was carried out to test the suitability of potential additive materials in
WOKA 3533 (WC-10Co4Cr) cermet HVOF coating subjected to slurry erosion in ash conditions. The additives
namely molybdenum carbide, yttrium oxide, and zirconium oxide were added in equal percentages (3 wt.%) in
WOKA cermet powder. High-velocity oxy-fuel (HVOF) spraying was performed to develop the additive-based
WOKA cermet coatings. The slurry erosion in ash conditions was tested using the pot tester. Microstructural and
mechanical properties of traditional and additive-based WOKA cermet coatings were also tested in the present
study; for example, microstructure, crystalline phases of as-sprayed coatings, and microhardness. Results present a
comparison of surface erosion wear of different cermet coatings. It was found that the yttrium oxide was a suitable
additive for the WOKA cermet coatings than the molybdenum carbide. However, zirconium oxide is unsuitable for
WOKA cermet coatings in erosion wear applications.
Milad Hooshyar, Maryam Torshabi, Maryam Kazemi,
Volume 20, Issue 2 (6-2023)
Abstract

Titanium implants are one of the most durable and conventional orthopedic and dental implants. The goal of this research is to improve the bio-compatibility of these implants by implementing nano coating of titanium oxide nanotubes (TNT) to enhance bone graft on the implant surface, and reduction of wound healing duration and risk of implant surgery at the same time. For this purpose, the effects of dimension and atomic structure of titanium oxide nanotubes are examined on the surface properties and biological performance and tried to introduce an optimum status of this nano-tubular structure. TNTs were synthesized by anodizing method on the surface of titanium sheets. Dimensions of TNT can be controlled by anodizing process parameters. Heat treatment affects the atomic structure of TNTs. Contact angle measurement as one of the important surface properties was investigated on different dimensions and structures of TNTs, to study human blood's physical interaction with the implant surface. In addition, the quality and quantity of bone material sediment on the surface were examined by SBF test and SEM analysis. Finally, cell culture provided informative data on bone cells' response to these nanotubular coatings by analyzing MTT results and SEM photography of cells. As a result, the optimum dimension and atomic structure of TNTs were defined and the required process parameters were introduced to obtain this state. This setup can be used as an optimum state of TNT as a nano coating on titanium implant with orthopedic functions to enhance the cell adhesion and acquire the highest proliferation rate which means faster bone graft and shorter convalescence.
 
Amirreza Sazvar, Seyed Mohammad Saeed Alavi, Hossein Sarpoolaky,
Volume 20, Issue 2 (6-2023)
Abstract

We report a simple and practical approach for the easy production of superhydrophobic coatings based on TiO2-SiO2@PDMS. In this study, we used tetraethylorthosilicate (TEOS) and titanium tetraisopropoxide (TTIP) as a precursor for the sol-gel synthesis of SiO2 and TiO2, respectively. Afterward, the surface of nanoparticles was modified by 1,1,1,3,3,3-hexamethyldisilazane (HMDS) before being combined with polydimethylsiloxane (PDMS). The hydrophobic property of coatings was evaluated by static contact angle measurements. The phase composition and structural evolution of the coatings were examined by X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analysis. It was shown that changing the weight ratio of the solution composition of the coating can affect the hydrophobicity of the surface. The best sample has shown a superhydrophobic property with a 153˚ contact angle which contained (75%TiO2-25%SiO2) and PDMS at a weight ratio of 1:1. Moreover, the results showed that the superhydrophobic coating retains its hydrophobic properties up to a temperature of 450 ˚C, and at higher temperatures, it converts to a super hydrophilic with a water contact angle close to 0 ˚. The SiO2-TiO2@PDMS coating degrades methylene blue by about 55% and was shown to be capable of photocatalytically decomposing organic pollutants.
Fabio Edson Mariani, Gabriel Viana Figueiredo, German Barragan, Luiz Carlos Castelleti, Reginaldo Teixeira Coelho,
Volume 20, Issue 3 (9-2023)
Abstract

Elevating component performance through advanced surface coatings finds its epitome in the domain of laser cladding technology. This technique facilitates the precision deposition of metallic, ceramic, or cermet coatings, accentuating their superiority over conventional methods. The application spectrum for laser-clad metallic coatings is extensive, encompassing critical components. Central to the efficacy of laser cladding is the modulation of laser parameters—encompassing power, speed, and gas flow—which decisively influence both process efficiency and coating properties. The meticulous calibration of these parameters holds the key to producing components endowed with refined attributes while ensuring the sustainable continuation of the process. As such, this study embarks on an empirical investigation aimed at transcending existing process limitations. It delves into the characterization of laser-clad WC-17Co coatings on AISI H13 and AISI 4140 steels. The importance of WC-17Co coatings lies in their capacity to enhance wear resistance, extend component life, reduce maintenance costs, and improve the performance of various industrial components across diverse sectors. On the other hand, the substrates have pivotal roles. AISI H13 is lauded for its exceptional hot work capabilities, while AISI 4140 steel is renowned for its robust strength and endurance. Through rigorous evaluation, the resultant deposited coatings offer crucial insights into the efficacy of manufacturing parameters. Employing a comprehensive suite of analytical techniques including laser confocal microscopy, Vickers microhardness assessment, and micro-adhesive wear testing, the study thoroughly characterizes the samples. The outcomes underscore the achievement of homogenous coatings marked by elevated hardness and exceptional wear resistance, thereby signifying a substantial enhancement over the substrate materials.
Mohammad Derakhshani, Saeed Rastegari, Ali Ghaffarinejad,
Volume 21, Issue 2 (6-2024)
Abstract

In this research, a nickel-tungsten coating as a catalyst for hydrogen evolution reaction (HER) with different current densities was synthesized and the resulting electrocatalytic properties and morphology were assessed. Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and chronoamperometry in 1 M NaOH were used to evaluate the electrocatalytic activity for HER. By increasing the current density of electrodeposition up to 500 mA/cm2, a columnar morphology was observed. The cyclic voltammetry test (CV) revealed that when the plating current density increases, Cdl has increased from 248 to 1310 µF/cm2 and the active surface area increases 5 times. The results showed that by modifying the coating morphology, the current density of the hydrogen evolution increased up to two times.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb