Search published articles


Showing 2 results for Tohidlou

R. Niazi, E. Tohidlou, H. Khosravi,
Volume 17, Issue 3 (September 2020)
Abstract

The effects of erbium (Er) addition at various weight percentages (0-0.6 wt.% at an interval of 0.2) on the microstructural characteristics, tensile response and wear properties of as-cast Al-7.5Si-0.5Mg alloy were evaluated. The microstructure of samples was examined by X-ray diffraction, optical microscopy and scanning electron microscopy. The obtained results demonstrated that the incorporation of erbium obviously decreased the α-Al grain size and eutectic Si, and altered the Si morphology from plate to semi-globular. Further addition of erbium (> 0.2 wt.%) did not alter the eutectic morphology and size. Moreover, the Al3Er phase was also observed in the eutectic region after modification. Out of the erbium contents used, 0.2 wt.% erbium showed the best influence on the tensile and wear properties. Compared with those of unmodified specimen, the values of ultimate tensile strength and elongation were enhanced by 31% and 39%, respectively with the introduction of 0.2 wt.% erbium. Additionally, a remarkable enhancement in the wear properties was observed with the addition of 0.2 wt.% erbium.
 

Zahra Rousta, Esmaeil Tohidlou, Hamed Khosravi,
Volume 18, Issue 1 (March 2021)
Abstract

This study deals with the effects of erbium (Er) addition on the microstructural evolution and tensile properties of Al-Mg2Si in-situ metal matrix composites. The morphology of primary Mg2Si and eutectic phases were observed in details using optical microscope and scanning electron microscopy (SEM). The results showed that the increase of Er content has a slight effect on the size and morphology of primary Mg2Si phases, but the eutectic structure evolves from the coarse structure into the fine one. Also, with Er addition the eutectic mixtures of Al and Mg2Si with fibrous morphology has been developed instead of the flake like Al-Mg2Si eutectic microstructure. Meanwhile, Al3Er phase was observed in the samples containing Er. The ultimate tensile strength (UTS) of the composite changes under the various content of Er. The maximum strength was found at the 0.6 wt% Er with the fine eutectic microstructure. The study of SEM micrographs from the fracture surface of composites revealed that Er addition changes the fracture mode from brittle to ductile one with fine dimples. The mechanism of microstructural evolution was discussed in details.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb